341 lines
7.7 KiB
TypeScript
341 lines
7.7 KiB
TypeScript
|
/**
|
||
|
* This is a 2D Projective Geometric Algebra implementation.
|
||
|
*
|
||
|
* For wider context on geometric algebra visit see https://bivector.net.
|
||
|
*
|
||
|
* For this specific algebra see cheatsheet https://bivector.net/2DPGA.pdf.
|
||
|
*
|
||
|
* Converted from generator written by enki, with a ton of added on top.
|
||
|
*
|
||
|
* This library uses 8-vectors to represent points, directions and lines
|
||
|
* in 2D space.
|
||
|
*
|
||
|
* An array `[a, b, c, d, e, f, g, h]` represents a n(8)vector:
|
||
|
* a + b*e0 + c*e1 + d*e2 + e*e01 + f*e20 + g*e12 + h*e012
|
||
|
*
|
||
|
* See GAPoint, GALine, GADirection and GATransform modules for common
|
||
|
* operations.
|
||
|
*/
|
||
|
|
||
|
export type Point = NVector;
|
||
|
export type Direction = NVector;
|
||
|
export type Line = NVector;
|
||
|
export type Transform = NVector;
|
||
|
|
||
|
export function point(x: number, y: number): Point {
|
||
|
return [0, 0, 0, 0, y, x, 1, 0];
|
||
|
}
|
||
|
|
||
|
export function origin(): Point {
|
||
|
return [0, 0, 0, 0, 0, 0, 1, 0];
|
||
|
}
|
||
|
|
||
|
export function direction(x: number, y: number): Direction {
|
||
|
const norm = Math.hypot(x, y); // same as `inorm(direction(x, y))`
|
||
|
return [0, 0, 0, 0, y / norm, x / norm, 0, 0];
|
||
|
}
|
||
|
|
||
|
export function offset(x: number, y: number): Direction {
|
||
|
return [0, 0, 0, 0, y, x, 0, 0];
|
||
|
}
|
||
|
|
||
|
/// This is the "implementation" part of the library
|
||
|
|
||
|
type NVector = readonly [
|
||
|
number,
|
||
|
number,
|
||
|
number,
|
||
|
number,
|
||
|
number,
|
||
|
number,
|
||
|
number,
|
||
|
number,
|
||
|
];
|
||
|
|
||
|
// These are labels for what each number in an nvector represents
|
||
|
const NVECTOR_BASE = ["1", "e0", "e1", "e2", "e01", "e20", "e12", "e012"];
|
||
|
|
||
|
// Used to represent points, lines and transformations
|
||
|
export function nvector(value: number = 0, index: number = 0): NVector {
|
||
|
const result = [0, 0, 0, 0, 0, 0, 0, 0];
|
||
|
if (index < 0 || index > 7) {
|
||
|
throw new Error(`Expected \`index\` betwen 0 and 7, got \`${index}\``);
|
||
|
}
|
||
|
if (value !== 0) {
|
||
|
result[index] = value;
|
||
|
}
|
||
|
return (result as unknown) as NVector;
|
||
|
}
|
||
|
|
||
|
const STRING_EPSILON = 0.000001;
|
||
|
export function toString(nvector: NVector): string {
|
||
|
const result = nvector
|
||
|
.map((value, index) =>
|
||
|
Math.abs(value) > STRING_EPSILON
|
||
|
? value.toFixed(7).replace(/(\.|0+)$/, "") +
|
||
|
(index > 0 ? NVECTOR_BASE[index] : "")
|
||
|
: null,
|
||
|
)
|
||
|
.filter((representation) => representation != null)
|
||
|
.join(" + ");
|
||
|
return result === "" ? "0" : result;
|
||
|
}
|
||
|
|
||
|
// Reverse the order of the basis blades.
|
||
|
export function reverse(nvector: NVector): NVector {
|
||
|
return [
|
||
|
nvector[0],
|
||
|
nvector[1],
|
||
|
nvector[2],
|
||
|
nvector[3],
|
||
|
-nvector[4],
|
||
|
-nvector[5],
|
||
|
-nvector[6],
|
||
|
-nvector[7],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
// Poincare duality operator.
|
||
|
export function dual(nvector: NVector): NVector {
|
||
|
return [
|
||
|
nvector[7],
|
||
|
nvector[6],
|
||
|
nvector[5],
|
||
|
nvector[4],
|
||
|
nvector[3],
|
||
|
nvector[2],
|
||
|
nvector[1],
|
||
|
nvector[0],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
// Clifford Conjugation
|
||
|
export function conjugate(nvector: NVector): NVector {
|
||
|
return [
|
||
|
nvector[0],
|
||
|
-nvector[1],
|
||
|
-nvector[2],
|
||
|
-nvector[3],
|
||
|
-nvector[4],
|
||
|
-nvector[5],
|
||
|
-nvector[6],
|
||
|
nvector[7],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
// Main involution
|
||
|
export function involute(nvector: NVector): NVector {
|
||
|
return [
|
||
|
nvector[0],
|
||
|
-nvector[1],
|
||
|
-nvector[2],
|
||
|
-nvector[3],
|
||
|
nvector[4],
|
||
|
nvector[5],
|
||
|
nvector[6],
|
||
|
-nvector[7],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
// Multivector addition
|
||
|
export function add(a: NVector, b: NVector | number): NVector {
|
||
|
if (isNumber(b)) {
|
||
|
return [a[0] + b, a[1], a[2], a[3], a[4], a[5], a[6], a[7]];
|
||
|
}
|
||
|
return [
|
||
|
a[0] + b[0],
|
||
|
a[1] + b[1],
|
||
|
a[2] + b[2],
|
||
|
a[3] + b[3],
|
||
|
a[4] + b[4],
|
||
|
a[5] + b[5],
|
||
|
a[6] + b[6],
|
||
|
a[7] + b[7],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
// Multivector subtraction
|
||
|
export function sub(a: NVector, b: NVector | number): NVector {
|
||
|
if (isNumber(b)) {
|
||
|
return [a[0] - b, a[1], a[2], a[3], a[4], a[5], a[6], a[7]];
|
||
|
}
|
||
|
return [
|
||
|
a[0] - b[0],
|
||
|
a[1] - b[1],
|
||
|
a[2] - b[2],
|
||
|
a[3] - b[3],
|
||
|
a[4] - b[4],
|
||
|
a[5] - b[5],
|
||
|
a[6] - b[6],
|
||
|
a[7] - b[7],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
// The geometric product.
|
||
|
export function mul(a: NVector, b: NVector | number): NVector {
|
||
|
if (isNumber(b)) {
|
||
|
return [
|
||
|
a[0] * b,
|
||
|
a[1] * b,
|
||
|
a[2] * b,
|
||
|
a[3] * b,
|
||
|
a[4] * b,
|
||
|
a[5] * b,
|
||
|
a[6] * b,
|
||
|
a[7] * b,
|
||
|
];
|
||
|
}
|
||
|
return [
|
||
|
mulScalar(a, b),
|
||
|
b[1] * a[0] +
|
||
|
b[0] * a[1] -
|
||
|
b[4] * a[2] +
|
||
|
b[5] * a[3] +
|
||
|
b[2] * a[4] -
|
||
|
b[3] * a[5] -
|
||
|
b[7] * a[6] -
|
||
|
b[6] * a[7],
|
||
|
b[2] * a[0] + b[0] * a[2] - b[6] * a[3] + b[3] * a[6],
|
||
|
b[3] * a[0] + b[6] * a[2] + b[0] * a[3] - b[2] * a[6],
|
||
|
b[4] * a[0] +
|
||
|
b[2] * a[1] -
|
||
|
b[1] * a[2] +
|
||
|
b[7] * a[3] +
|
||
|
b[0] * a[4] +
|
||
|
b[6] * a[5] -
|
||
|
b[5] * a[6] +
|
||
|
b[3] * a[7],
|
||
|
b[5] * a[0] -
|
||
|
b[3] * a[1] +
|
||
|
b[7] * a[2] +
|
||
|
b[1] * a[3] -
|
||
|
b[6] * a[4] +
|
||
|
b[0] * a[5] +
|
||
|
b[4] * a[6] +
|
||
|
b[2] * a[7],
|
||
|
b[6] * a[0] + b[3] * a[2] - b[2] * a[3] + b[0] * a[6],
|
||
|
b[7] * a[0] +
|
||
|
b[6] * a[1] +
|
||
|
b[5] * a[2] +
|
||
|
b[4] * a[3] +
|
||
|
b[3] * a[4] +
|
||
|
b[2] * a[5] +
|
||
|
b[1] * a[6] +
|
||
|
b[0] * a[7],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
export function mulScalar(a: NVector, b: NVector): number {
|
||
|
return b[0] * a[0] + b[2] * a[2] + b[3] * a[3] - b[6] * a[6];
|
||
|
}
|
||
|
|
||
|
// The outer/exterior/wedge product.
|
||
|
export function meet(a: NVector, b: NVector): NVector {
|
||
|
return [
|
||
|
b[0] * a[0],
|
||
|
b[1] * a[0] + b[0] * a[1],
|
||
|
b[2] * a[0] + b[0] * a[2],
|
||
|
b[3] * a[0] + b[0] * a[3],
|
||
|
b[4] * a[0] + b[2] * a[1] - b[1] * a[2] + b[0] * a[4],
|
||
|
b[5] * a[0] - b[3] * a[1] + b[1] * a[3] + b[0] * a[5],
|
||
|
b[6] * a[0] + b[3] * a[2] - b[2] * a[3] + b[0] * a[6],
|
||
|
b[7] * a[0] +
|
||
|
b[6] * a[1] +
|
||
|
b[5] * a[2] +
|
||
|
b[4] * a[3] +
|
||
|
b[3] * a[4] +
|
||
|
b[2] * a[5] +
|
||
|
b[1] * a[6],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
// The regressive product.
|
||
|
export function join(a: NVector, b: NVector): NVector {
|
||
|
return [
|
||
|
joinScalar(a, b),
|
||
|
a[1] * b[7] + a[4] * b[5] - a[5] * b[4] + a[7] * b[1],
|
||
|
a[2] * b[7] - a[4] * b[6] + a[6] * b[4] + a[7] * b[2],
|
||
|
a[3] * b[7] + a[5] * b[6] - a[6] * b[5] + a[7] * b[3],
|
||
|
a[4] * b[7] + a[7] * b[4],
|
||
|
a[5] * b[7] + a[7] * b[5],
|
||
|
a[6] * b[7] + a[7] * b[6],
|
||
|
a[7] * b[7],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
export function joinScalar(a: NVector, b: NVector): number {
|
||
|
return (
|
||
|
a[0] * b[7] +
|
||
|
a[1] * b[6] +
|
||
|
a[2] * b[5] +
|
||
|
a[3] * b[4] +
|
||
|
a[4] * b[3] +
|
||
|
a[5] * b[2] +
|
||
|
a[6] * b[1] +
|
||
|
a[7] * b[0]
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// The inner product.
|
||
|
export function dot(a: NVector, b: NVector): NVector {
|
||
|
return [
|
||
|
b[0] * a[0] + b[2] * a[2] + b[3] * a[3] - b[6] * a[6],
|
||
|
b[1] * a[0] +
|
||
|
b[0] * a[1] -
|
||
|
b[4] * a[2] +
|
||
|
b[5] * a[3] +
|
||
|
b[2] * a[4] -
|
||
|
b[3] * a[5] -
|
||
|
b[7] * a[6] -
|
||
|
b[6] * a[7],
|
||
|
b[2] * a[0] + b[0] * a[2] - b[6] * a[3] + b[3] * a[6],
|
||
|
b[3] * a[0] + b[6] * a[2] + b[0] * a[3] - b[2] * a[6],
|
||
|
b[4] * a[0] + b[7] * a[3] + b[0] * a[4] + b[3] * a[7],
|
||
|
b[5] * a[0] + b[7] * a[2] + b[0] * a[5] + b[2] * a[7],
|
||
|
b[6] * a[0] + b[0] * a[6],
|
||
|
b[7] * a[0] + b[0] * a[7],
|
||
|
];
|
||
|
}
|
||
|
|
||
|
export function norm(a: NVector): number {
|
||
|
return Math.sqrt(
|
||
|
Math.abs(a[0] * a[0] - a[2] * a[2] - a[3] * a[3] + a[6] * a[6]),
|
||
|
);
|
||
|
}
|
||
|
|
||
|
export function inorm(a: NVector): number {
|
||
|
return Math.sqrt(
|
||
|
Math.abs(a[7] * a[7] - a[5] * a[5] - a[4] * a[4] + a[1] * a[1]),
|
||
|
);
|
||
|
}
|
||
|
|
||
|
export function normalized(a: NVector): NVector {
|
||
|
const n = norm(a);
|
||
|
if (n === 0 || n === 1) {
|
||
|
return a;
|
||
|
}
|
||
|
const sign = a[6] < 0 ? -1 : 1;
|
||
|
return mul(a, sign / n);
|
||
|
}
|
||
|
|
||
|
export function inormalized(a: NVector): NVector {
|
||
|
const n = inorm(a);
|
||
|
if (n === 0 || n === 1) {
|
||
|
return a;
|
||
|
}
|
||
|
return mul(a, 1 / n);
|
||
|
}
|
||
|
|
||
|
function isNumber(a: any): a is number {
|
||
|
return typeof a === "number";
|
||
|
}
|
||
|
|
||
|
export const E0: NVector = nvector(1, 1);
|
||
|
export const E1: NVector = nvector(1, 2);
|
||
|
export const E2: NVector = nvector(1, 3);
|
||
|
export const E01: NVector = nvector(1, 4);
|
||
|
export const E20: NVector = nvector(1, 5);
|
||
|
export const E12: NVector = nvector(1, 6);
|
||
|
export const E012: NVector = nvector(1, 7);
|
||
|
export const I = E012;
|