import { distanceBetweenPointAndSegment } from "../math"; import { ExcalidrawElement } from "./types"; import { getDiamondPoints, getElementAbsoluteCoords, getLinearElementAbsoluteBounds, } from "./bounds"; import { Point } from "../types"; import { Drawable, OpSet } from "roughjs/bin/core"; import { AppState } from "../types"; import { getShapeForElement } from "../renderer/renderElement"; function isElementDraggableFromInside( element: ExcalidrawElement, appState: AppState, ): boolean { return ( element.backgroundColor !== "transparent" || appState.selectedElementIds[element.id] ); } export function hitTest( element: ExcalidrawElement, appState: AppState, x: number, y: number, zoom: number, ): boolean { // For shapes that are composed of lines, we only enable point-selection when the distance // of the click is less than x pixels of any of the lines that the shape is composed of const lineThreshold = 10 / zoom; if (element.type === "ellipse") { // https://stackoverflow.com/a/46007540/232122 const px = Math.abs(x - element.x - element.width / 2); const py = Math.abs(y - element.y - element.height / 2); let tx = 0.707; let ty = 0.707; const a = Math.abs(element.width) / 2; const b = Math.abs(element.height) / 2; [0, 1, 2, 3].forEach(x => { const xx = a * tx; const yy = b * ty; const ex = ((a * a - b * b) * tx ** 3) / a; const ey = ((b * b - a * a) * ty ** 3) / b; const rx = xx - ex; const ry = yy - ey; const qx = px - ex; const qy = py - ey; const r = Math.hypot(ry, rx); const q = Math.hypot(qy, qx); tx = Math.min(1, Math.max(0, ((qx * r) / q + ex) / a)); ty = Math.min(1, Math.max(0, ((qy * r) / q + ey) / b)); const t = Math.hypot(ty, tx); tx /= t; ty /= t; }); if (isElementDraggableFromInside(element, appState)) { return ( a * tx - (px - lineThreshold) >= 0 && b * ty - (py - lineThreshold) >= 0 ); } return Math.hypot(a * tx - px, b * ty - py) < lineThreshold; } else if (element.type === "rectangle") { const [x1, y1, x2, y2] = getElementAbsoluteCoords(element); if (isElementDraggableFromInside(element, appState)) { return ( x > x1 - lineThreshold && x < x2 + lineThreshold && y > y1 - lineThreshold && y < y2 + lineThreshold ); } // (x1, y1) --A-- (x2, y1) // |D |B // (x1, y2) --C-- (x2, y2) return ( distanceBetweenPointAndSegment(x, y, x1, y1, x2, y1) < lineThreshold || // A distanceBetweenPointAndSegment(x, y, x2, y1, x2, y2) < lineThreshold || // B distanceBetweenPointAndSegment(x, y, x2, y2, x1, y2) < lineThreshold || // C distanceBetweenPointAndSegment(x, y, x1, y2, x1, y1) < lineThreshold // D ); } else if (element.type === "diamond") { x -= element.x; y -= element.y; let [ topX, topY, rightX, rightY, bottomX, bottomY, leftX, leftY, ] = getDiamondPoints(element); if (isElementDraggableFromInside(element, appState)) { // TODO: remove this when we normalize coordinates globally if (topY > bottomY) { [bottomY, topY] = [topY, bottomY]; } if (rightX < leftX) { [leftX, rightX] = [rightX, leftX]; } topY -= lineThreshold; bottomY += lineThreshold; leftX -= lineThreshold; rightX += lineThreshold; // all deltas should be < 0. Delta > 0 indicates it's on the outside side // of the line. // // (topX, topY) // D / \ A // / \ // (leftX, leftY) (rightX, rightY) // C \ / B // \ / // (bottomX, bottomY) // // https://stackoverflow.com/a/2752753/927631 return ( // delta from line D (leftX - topX) * (y - leftY) - (leftX - x) * (topY - leftY) <= 0 && // delta from line A (topX - rightX) * (y - rightY) - (x - rightX) * (topY - rightY) <= 0 && // delta from line B (rightX - bottomX) * (y - bottomY) - (x - bottomX) * (rightY - bottomY) <= 0 && // delta from line C (bottomX - leftX) * (y - leftY) - (x - leftX) * (bottomY - leftY) <= 0 ); } return ( distanceBetweenPointAndSegment(x, y, topX, topY, rightX, rightY) < lineThreshold || distanceBetweenPointAndSegment(x, y, rightX, rightY, bottomX, bottomY) < lineThreshold || distanceBetweenPointAndSegment(x, y, bottomX, bottomY, leftX, leftY) < lineThreshold || distanceBetweenPointAndSegment(x, y, leftX, leftY, topX, topY) < lineThreshold ); } else if (element.type === "arrow" || element.type === "line") { if (!getShapeForElement(element)) { return false; } const shape = getShapeForElement(element) as Drawable[]; const [x1, y1, x2, y2] = getLinearElementAbsoluteBounds(element); if (x < x1 || y < y1 - 10 || x > x2 || y > y2 + 10) { return false; } const relX = x - element.x; const relY = y - element.y; // hit thest all "subshapes" of the linear element return shape.some(subshape => hitTestRoughShape(subshape.sets, relX, relY)); } else if (element.type === "text") { const [x1, y1, x2, y2] = getElementAbsoluteCoords(element); return x >= x1 && x <= x2 && y >= y1 && y <= y2; } else if (element.type === "selection") { console.warn("This should not happen, we need to investigate why it does."); return false; } throw new Error(`Unimplemented type ${element.type}`); } const pointInBezierEquation = ( p0: Point, p1: Point, p2: Point, p3: Point, [mx, my]: Point, ) => { // B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3 const equation = (t: number, idx: number) => Math.pow(1 - t, 3) * p3[idx] + 3 * t * Math.pow(1 - t, 2) * p2[idx] + 3 * Math.pow(t, 2) * (1 - t) * p1[idx] + p0[idx] * Math.pow(t, 3); const epsilon = 20; // go through t in increments of 0.01 let t = 0; while (t <= 1.0) { const tx = equation(t, 0); const ty = equation(t, 1); const diff = Math.sqrt(Math.pow(tx - mx, 2) + Math.pow(ty - my, 2)); if (diff < epsilon) { return true; } t += 0.01; } return false; }; const hitTestRoughShape = (opSet: OpSet[], x: number, y: number) => { // read operations from first opSet const ops = opSet[0].ops; // set start position as (0,0) just in case // move operation does not exist (unlikely but it is worth safekeeping it) let currentP: Point = [0, 0]; return ops.some(({ op, data }, idx) => { // There are only four operation types: // move, bcurveTo, lineTo, and curveTo if (op === "move") { // change starting point currentP = (data as unknown) as Point; // move operation does not draw anything; so, it always // returns false } else if (op === "bcurveTo") { // create points from bezier curve // bezier curve stores data as a flattened array of three positions // [x1, y1, x2, y2, x3, y3] const p1 = [data[0], data[1]] as Point; const p2 = [data[2], data[3]] as Point; const p3 = [data[4], data[5]] as Point; const p0 = currentP; currentP = p3; // check if points are on the curve // cubic bezier curves require four parameters // the first parameter is the last stored position (p0) const retVal = pointInBezierEquation(p0, p1, p2, p3, [x, y]); // set end point of bezier curve as the new starting point for // upcoming operations as each operation is based on the last drawn // position of the previous operation return retVal; } else if (op === "lineTo") { // TODO: Implement this } else if (op === "qcurveTo") { // TODO: Implement this } return false; }); };