import { NormalizedZoomValue, Point, Zoom } from "./types"; import { LINE_CONFIRM_THRESHOLD } from "./constants"; import { ExcalidrawLinearElement } from "./element/types"; export const rotate = ( x1: number, y1: number, x2: number, y2: number, angle: number, ): [number, number] => // π‘Žβ€²π‘₯=(π‘Žπ‘₯βˆ’π‘π‘₯)cosπœƒβˆ’(π‘Žπ‘¦βˆ’π‘π‘¦)sinπœƒ+𝑐π‘₯ // π‘Žβ€²π‘¦=(π‘Žπ‘₯βˆ’π‘π‘₯)sinπœƒ+(π‘Žπ‘¦βˆ’π‘π‘¦)cosπœƒ+𝑐𝑦. // https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line [ (x1 - x2) * Math.cos(angle) - (y1 - y2) * Math.sin(angle) + x2, (x1 - x2) * Math.sin(angle) + (y1 - y2) * Math.cos(angle) + y2, ]; export const rotatePoint = ( point: Point, center: Point, angle: number, ): [number, number] => rotate(point[0], point[1], center[0], center[1], angle); export const adjustXYWithRotation = ( sides: { n?: boolean; e?: boolean; s?: boolean; w?: boolean; }, x: number, y: number, angle: number, deltaX1: number, deltaY1: number, deltaX2: number, deltaY2: number, ): [number, number] => { const cos = Math.cos(angle); const sin = Math.sin(angle); if (sides.e && sides.w) { x += deltaX1 + deltaX2; } else if (sides.e) { x += deltaX1 * (1 + cos); y += deltaX1 * sin; x += deltaX2 * (1 - cos); y += deltaX2 * -sin; } else if (sides.w) { x += deltaX1 * (1 - cos); y += deltaX1 * -sin; x += deltaX2 * (1 + cos); y += deltaX2 * sin; } if (sides.n && sides.s) { y += deltaY1 + deltaY2; } else if (sides.n) { x += deltaY1 * sin; y += deltaY1 * (1 - cos); x += deltaY2 * -sin; y += deltaY2 * (1 + cos); } else if (sides.s) { x += deltaY1 * -sin; y += deltaY1 * (1 + cos); x += deltaY2 * sin; y += deltaY2 * (1 - cos); } return [x, y]; }; export const getPointOnAPath = (point: Point, path: Point[]) => { const [px, py] = point; const [start, ...other] = path; let [lastX, lastY] = start; let kLine: number = 0; let idx: number = 0; // if any item in the array is true, it means that a point is // on some segment of a line based path const retVal = other.some(([x2, y2], i) => { // we always take a line when dealing with line segments const x1 = lastX; const y1 = lastY; lastX = x2; lastY = y2; // if a point is not within the domain of the line segment // it is not on the line segment if (px < x1 || px > x2) { return false; } // check if all points lie on the same line // y1 = kx1 + b, y2 = kx2 + b // y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1) // coefficient for the line (p0, p1) const kL = (y2 - y1) / (x2 - x1); // coefficient for the line segment (p0, point) const kP1 = (py - y1) / (px - x1); // coefficient for the line segment (point, p1) const kP2 = (py - y2) / (px - x2); // because we are basing both lines from the same starting point // the only option for collinearity is having same coefficients // using it for floating point comparisons const epsilon = 0.3; // if coefficient is more than an arbitrary epsilon, // these lines are nor collinear if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) { return false; } // store the coefficient because we are goint to need it kLine = kL; idx = i; return true; }); // Return a coordinate that is always on the line segment if (retVal === true) { return { x: point[0], y: kLine * point[0], segment: idx }; } return null; }; export const distance2d = (x1: number, y1: number, x2: number, y2: number) => { const xd = x2 - x1; const yd = y2 - y1; return Math.hypot(xd, yd); }; export const centerPoint = (a: Point, b: Point): Point => { return [(a[0] + b[0]) / 2, (a[1] + b[1]) / 2]; }; // Checks if the first and last point are close enough // to be considered a loop export const isPathALoop = ( points: ExcalidrawLinearElement["points"], /** supply if you want the loop detection to account for current zoom */ zoomValue: Zoom["value"] = 1 as NormalizedZoomValue, ): boolean => { if (points.length >= 3) { const [first, last] = [points[0], points[points.length - 1]]; const distance = distance2d(first[0], first[1], last[0], last[1]); // Adjusting LINE_CONFIRM_THRESHOLD to current zoom so that when zoomed in // really close we make the threshold smaller, and vice versa. return distance <= LINE_CONFIRM_THRESHOLD / zoomValue; } return false; }; // Draw a line from the point to the right till infiinty // Check how many lines of the polygon does this infinite line intersects with // If the number of intersections is odd, point is in the polygon export const isPointInPolygon = ( points: Point[], x: number, y: number, ): boolean => { const vertices = points.length; // There must be at least 3 vertices in polygon if (vertices < 3) { return false; } const extreme: Point = [Number.MAX_SAFE_INTEGER, y]; const p: Point = [x, y]; let count = 0; for (let i = 0; i < vertices; i++) { const current = points[i]; const next = points[(i + 1) % vertices]; if (doSegmentsIntersect(current, next, p, extreme)) { if (orderedColinearOrientation(current, p, next) === 0) { return isPointWithinBounds(current, p, next); } count++; } } // true if count is off return count % 2 === 1; }; // Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`. // This is an approximation to "does `q` lie on a segment `pr`" check. const isPointWithinBounds = (p: Point, q: Point, r: Point) => { return ( q[0] <= Math.max(p[0], r[0]) && q[0] >= Math.min(p[0], r[0]) && q[1] <= Math.max(p[1], r[1]) && q[1] >= Math.min(p[1], r[1]) ); }; // For the ordered points p, q, r, return // 0 if p, q, r are colinear // 1 if Clockwise // 2 if counterclickwise const orderedColinearOrientation = (p: Point, q: Point, r: Point) => { const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]); if (val === 0) { return 0; } return val > 0 ? 1 : 2; }; // Check is p1q1 intersects with p2q2 const doSegmentsIntersect = (p1: Point, q1: Point, p2: Point, q2: Point) => { const o1 = orderedColinearOrientation(p1, q1, p2); const o2 = orderedColinearOrientation(p1, q1, q2); const o3 = orderedColinearOrientation(p2, q2, p1); const o4 = orderedColinearOrientation(p2, q2, q1); if (o1 !== o2 && o3 !== o4) { return true; } // p1, q1 and p2 are colinear and p2 lies on segment p1q1 if (o1 === 0 && isPointWithinBounds(p1, p2, q1)) { return true; } // p1, q1 and p2 are colinear and q2 lies on segment p1q1 if (o2 === 0 && isPointWithinBounds(p1, q2, q1)) { return true; } // p2, q2 and p1 are colinear and p1 lies on segment p2q2 if (o3 === 0 && isPointWithinBounds(p2, p1, q2)) { return true; } // p2, q2 and q1 are colinear and q1 lies on segment p2q2 if (o4 === 0 && isPointWithinBounds(p2, q1, q2)) { return true; } return false; }; // TODO: Rounding this point causes some shake when free drawing export const getGridPoint = ( x: number, y: number, gridSize: number | null, ): [number, number] => { if (gridSize) { return [ Math.round(x / gridSize) * gridSize, Math.round(y / gridSize) * gridSize, ]; } return [x, y]; };