excalidraw/src/math.ts
Steve Ruiz 49c6bdd520
feat: improved freedraw (#3512)
Co-authored-by: dwelle <luzar.david@gmail.com>
2021-05-09 17:42:10 +02:00

266 lines
7.3 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import { NormalizedZoomValue, Point, Zoom } from "./types";
import { LINE_CONFIRM_THRESHOLD } from "./constants";
import { ExcalidrawLinearElement } from "./element/types";
export const rotate = (
x1: number,
y1: number,
x2: number,
y2: number,
angle: number,
): [number, number] =>
// 𝑎𝑥=(𝑎𝑥𝑐𝑥)cos𝜃(𝑎𝑦𝑐𝑦)sin𝜃+𝑐𝑥
// 𝑎𝑦=(𝑎𝑥𝑐𝑥)sin𝜃+(𝑎𝑦𝑐𝑦)cos𝜃+𝑐𝑦.
// https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line
[
(x1 - x2) * Math.cos(angle) - (y1 - y2) * Math.sin(angle) + x2,
(x1 - x2) * Math.sin(angle) + (y1 - y2) * Math.cos(angle) + y2,
];
export const rotatePoint = (
point: Point,
center: Point,
angle: number,
): [number, number] => rotate(point[0], point[1], center[0], center[1], angle);
export const adjustXYWithRotation = (
sides: {
n?: boolean;
e?: boolean;
s?: boolean;
w?: boolean;
},
x: number,
y: number,
angle: number,
deltaX1: number,
deltaY1: number,
deltaX2: number,
deltaY2: number,
): [number, number] => {
const cos = Math.cos(angle);
const sin = Math.sin(angle);
if (sides.e && sides.w) {
x += deltaX1 + deltaX2;
} else if (sides.e) {
x += deltaX1 * (1 + cos);
y += deltaX1 * sin;
x += deltaX2 * (1 - cos);
y += deltaX2 * -sin;
} else if (sides.w) {
x += deltaX1 * (1 - cos);
y += deltaX1 * -sin;
x += deltaX2 * (1 + cos);
y += deltaX2 * sin;
}
if (sides.n && sides.s) {
y += deltaY1 + deltaY2;
} else if (sides.n) {
x += deltaY1 * sin;
y += deltaY1 * (1 - cos);
x += deltaY2 * -sin;
y += deltaY2 * (1 + cos);
} else if (sides.s) {
x += deltaY1 * -sin;
y += deltaY1 * (1 + cos);
x += deltaY2 * sin;
y += deltaY2 * (1 - cos);
}
return [x, y];
};
export const getPointOnAPath = (point: Point, path: Point[]) => {
const [px, py] = point;
const [start, ...other] = path;
let [lastX, lastY] = start;
let kLine: number = 0;
let idx: number = 0;
// if any item in the array is true, it means that a point is
// on some segment of a line based path
const retVal = other.some(([x2, y2], i) => {
// we always take a line when dealing with line segments
const x1 = lastX;
const y1 = lastY;
lastX = x2;
lastY = y2;
// if a point is not within the domain of the line segment
// it is not on the line segment
if (px < x1 || px > x2) {
return false;
}
// check if all points lie on the same line
// y1 = kx1 + b, y2 = kx2 + b
// y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1)
// coefficient for the line (p0, p1)
const kL = (y2 - y1) / (x2 - x1);
// coefficient for the line segment (p0, point)
const kP1 = (py - y1) / (px - x1);
// coefficient for the line segment (point, p1)
const kP2 = (py - y2) / (px - x2);
// because we are basing both lines from the same starting point
// the only option for collinearity is having same coefficients
// using it for floating point comparisons
const epsilon = 0.3;
// if coefficient is more than an arbitrary epsilon,
// these lines are nor collinear
if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) {
return false;
}
// store the coefficient because we are goint to need it
kLine = kL;
idx = i;
return true;
});
// Return a coordinate that is always on the line segment
if (retVal === true) {
return { x: point[0], y: kLine * point[0], segment: idx };
}
return null;
};
export const distance2d = (x1: number, y1: number, x2: number, y2: number) => {
const xd = x2 - x1;
const yd = y2 - y1;
return Math.hypot(xd, yd);
};
export const centerPoint = (a: Point, b: Point): Point => {
return [(a[0] + b[0]) / 2, (a[1] + b[1]) / 2];
};
// Checks if the first and last point are close enough
// to be considered a loop
export const isPathALoop = (
points: ExcalidrawLinearElement["points"],
/** supply if you want the loop detection to account for current zoom */
zoomValue: Zoom["value"] = 1 as NormalizedZoomValue,
): boolean => {
if (points.length >= 3) {
const [first, last] = [points[0], points[points.length - 1]];
const distance = distance2d(first[0], first[1], last[0], last[1]);
// Adjusting LINE_CONFIRM_THRESHOLD to current zoom so that when zoomed in
// really close we make the threshold smaller, and vice versa.
return distance <= LINE_CONFIRM_THRESHOLD / zoomValue;
}
return false;
};
// Draw a line from the point to the right till infiinty
// Check how many lines of the polygon does this infinite line intersects with
// If the number of intersections is odd, point is in the polygon
export const isPointInPolygon = (
points: Point[],
x: number,
y: number,
): boolean => {
const vertices = points.length;
// There must be at least 3 vertices in polygon
if (vertices < 3) {
return false;
}
const extreme: Point = [Number.MAX_SAFE_INTEGER, y];
const p: Point = [x, y];
let count = 0;
for (let i = 0; i < vertices; i++) {
const current = points[i];
const next = points[(i + 1) % vertices];
if (doSegmentsIntersect(current, next, p, extreme)) {
if (orderedColinearOrientation(current, p, next) === 0) {
return isPointWithinBounds(current, p, next);
}
count++;
}
}
// true if count is off
return count % 2 === 1;
};
// Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
// This is an approximation to "does `q` lie on a segment `pr`" check.
const isPointWithinBounds = (p: Point, q: Point, r: Point) => {
return (
q[0] <= Math.max(p[0], r[0]) &&
q[0] >= Math.min(p[0], r[0]) &&
q[1] <= Math.max(p[1], r[1]) &&
q[1] >= Math.min(p[1], r[1])
);
};
// For the ordered points p, q, r, return
// 0 if p, q, r are colinear
// 1 if Clockwise
// 2 if counterclickwise
const orderedColinearOrientation = (p: Point, q: Point, r: Point) => {
const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]);
if (val === 0) {
return 0;
}
return val > 0 ? 1 : 2;
};
// Check is p1q1 intersects with p2q2
const doSegmentsIntersect = (p1: Point, q1: Point, p2: Point, q2: Point) => {
const o1 = orderedColinearOrientation(p1, q1, p2);
const o2 = orderedColinearOrientation(p1, q1, q2);
const o3 = orderedColinearOrientation(p2, q2, p1);
const o4 = orderedColinearOrientation(p2, q2, q1);
if (o1 !== o2 && o3 !== o4) {
return true;
}
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 === 0 && isPointWithinBounds(p1, p2, q1)) {
return true;
}
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
if (o2 === 0 && isPointWithinBounds(p1, q2, q1)) {
return true;
}
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 === 0 && isPointWithinBounds(p2, p1, q2)) {
return true;
}
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 === 0 && isPointWithinBounds(p2, q1, q2)) {
return true;
}
return false;
};
// TODO: Rounding this point causes some shake when free drawing
export const getGridPoint = (
x: number,
y: number,
gridSize: number | null,
): [number, number] => {
if (gridSize) {
return [
Math.round(x / gridSize) * gridSize,
Math.round(y / gridSize) * gridSize,
];
}
return [x, y];
};