excalidraw/src/ga.ts

318 lines
7.4 KiB
TypeScript

/**
* This is a 2D Projective Geometric Algebra implementation.
*
* For wider context on geometric algebra visit see https://bivector.net.
*
* For this specific algebra see cheatsheet https://bivector.net/2DPGA.pdf.
*
* Converted from generator written by enki, with a ton of added on top.
*
* This library uses 8-vectors to represent points, directions and lines
* in 2D space.
*
* An array `[a, b, c, d, e, f, g, h]` represents a n(8)vector:
* a + b*e0 + c*e1 + d*e2 + e*e01 + f*e20 + g*e12 + h*e012
*
* See GAPoint, GALine, GADirection and GATransform modules for common
* operations.
*/
export type Point = NVector;
export type Direction = NVector;
export type Line = NVector;
export type Transform = NVector;
export const point = (x: number, y: number): Point => [0, 0, 0, 0, y, x, 1, 0];
export const origin = (): Point => [0, 0, 0, 0, 0, 0, 1, 0];
export const direction = (x: number, y: number): Direction => {
const norm = Math.hypot(x, y); // same as `inorm(direction(x, y))`
return [0, 0, 0, 0, y / norm, x / norm, 0, 0];
};
export const offset = (x: number, y: number): Direction => [
0,
0,
0,
0,
y,
x,
0,
0,
];
/// This is the "implementation" part of the library
type NVector = readonly [
number,
number,
number,
number,
number,
number,
number,
number,
];
// These are labels for what each number in an nvector represents
const NVECTOR_BASE = ["1", "e0", "e1", "e2", "e01", "e20", "e12", "e012"];
// Used to represent points, lines and transformations
export const nvector = (value: number = 0, index: number = 0): NVector => {
const result = [0, 0, 0, 0, 0, 0, 0, 0];
if (index < 0 || index > 7) {
throw new Error(`Expected \`index\` betwen 0 and 7, got \`${index}\``);
}
if (value !== 0) {
result[index] = value;
}
return result as unknown as NVector;
};
const STRING_EPSILON = 0.000001;
export const toString = (nvector: NVector): string => {
const result = nvector
.map((value, index) =>
Math.abs(value) > STRING_EPSILON
? value.toFixed(7).replace(/(\.|0+)$/, "") +
(index > 0 ? NVECTOR_BASE[index] : "")
: null,
)
.filter((representation) => representation != null)
.join(" + ");
return result === "" ? "0" : result;
};
// Reverse the order of the basis blades.
export const reverse = (nvector: NVector): NVector => [
nvector[0],
nvector[1],
nvector[2],
nvector[3],
-nvector[4],
-nvector[5],
-nvector[6],
-nvector[7],
];
// Poincare duality operator.
export const dual = (nvector: NVector): NVector => [
nvector[7],
nvector[6],
nvector[5],
nvector[4],
nvector[3],
nvector[2],
nvector[1],
nvector[0],
];
// Clifford Conjugation
export const conjugate = (nvector: NVector): NVector => [
nvector[0],
-nvector[1],
-nvector[2],
-nvector[3],
-nvector[4],
-nvector[5],
-nvector[6],
nvector[7],
];
// Main involution
export const involute = (nvector: NVector): NVector => [
nvector[0],
-nvector[1],
-nvector[2],
-nvector[3],
nvector[4],
nvector[5],
nvector[6],
-nvector[7],
];
// Multivector addition
export const add = (a: NVector, b: NVector | number): NVector => {
if (isNumber(b)) {
return [a[0] + b, a[1], a[2], a[3], a[4], a[5], a[6], a[7]];
}
return [
a[0] + b[0],
a[1] + b[1],
a[2] + b[2],
a[3] + b[3],
a[4] + b[4],
a[5] + b[5],
a[6] + b[6],
a[7] + b[7],
];
};
// Multivector subtraction
export const sub = (a: NVector, b: NVector | number): NVector => {
if (isNumber(b)) {
return [a[0] - b, a[1], a[2], a[3], a[4], a[5], a[6], a[7]];
}
return [
a[0] - b[0],
a[1] - b[1],
a[2] - b[2],
a[3] - b[3],
a[4] - b[4],
a[5] - b[5],
a[6] - b[6],
a[7] - b[7],
];
};
// The geometric product.
export const mul = (a: NVector, b: NVector | number): NVector => {
if (isNumber(b)) {
return [
a[0] * b,
a[1] * b,
a[2] * b,
a[3] * b,
a[4] * b,
a[5] * b,
a[6] * b,
a[7] * b,
];
}
return [
mulScalar(a, b),
b[1] * a[0] +
b[0] * a[1] -
b[4] * a[2] +
b[5] * a[3] +
b[2] * a[4] -
b[3] * a[5] -
b[7] * a[6] -
b[6] * a[7],
b[2] * a[0] + b[0] * a[2] - b[6] * a[3] + b[3] * a[6],
b[3] * a[0] + b[6] * a[2] + b[0] * a[3] - b[2] * a[6],
b[4] * a[0] +
b[2] * a[1] -
b[1] * a[2] +
b[7] * a[3] +
b[0] * a[4] +
b[6] * a[5] -
b[5] * a[6] +
b[3] * a[7],
b[5] * a[0] -
b[3] * a[1] +
b[7] * a[2] +
b[1] * a[3] -
b[6] * a[4] +
b[0] * a[5] +
b[4] * a[6] +
b[2] * a[7],
b[6] * a[0] + b[3] * a[2] - b[2] * a[3] + b[0] * a[6],
b[7] * a[0] +
b[6] * a[1] +
b[5] * a[2] +
b[4] * a[3] +
b[3] * a[4] +
b[2] * a[5] +
b[1] * a[6] +
b[0] * a[7],
];
};
export const mulScalar = (a: NVector, b: NVector): number =>
b[0] * a[0] + b[2] * a[2] + b[3] * a[3] - b[6] * a[6];
// The outer/exterior/wedge product.
export const meet = (a: NVector, b: NVector): NVector => [
b[0] * a[0],
b[1] * a[0] + b[0] * a[1],
b[2] * a[0] + b[0] * a[2],
b[3] * a[0] + b[0] * a[3],
b[4] * a[0] + b[2] * a[1] - b[1] * a[2] + b[0] * a[4],
b[5] * a[0] - b[3] * a[1] + b[1] * a[3] + b[0] * a[5],
b[6] * a[0] + b[3] * a[2] - b[2] * a[3] + b[0] * a[6],
b[7] * a[0] +
b[6] * a[1] +
b[5] * a[2] +
b[4] * a[3] +
b[3] * a[4] +
b[2] * a[5] +
b[1] * a[6],
];
// The regressive product.
export const join = (a: NVector, b: NVector): NVector => [
joinScalar(a, b),
a[1] * b[7] + a[4] * b[5] - a[5] * b[4] + a[7] * b[1],
a[2] * b[7] - a[4] * b[6] + a[6] * b[4] + a[7] * b[2],
a[3] * b[7] + a[5] * b[6] - a[6] * b[5] + a[7] * b[3],
a[4] * b[7] + a[7] * b[4],
a[5] * b[7] + a[7] * b[5],
a[6] * b[7] + a[7] * b[6],
a[7] * b[7],
];
export const joinScalar = (a: NVector, b: NVector): number =>
a[0] * b[7] +
a[1] * b[6] +
a[2] * b[5] +
a[3] * b[4] +
a[4] * b[3] +
a[5] * b[2] +
a[6] * b[1] +
a[7] * b[0];
// The inner product.
export const dot = (a: NVector, b: NVector): NVector => [
b[0] * a[0] + b[2] * a[2] + b[3] * a[3] - b[6] * a[6],
b[1] * a[0] +
b[0] * a[1] -
b[4] * a[2] +
b[5] * a[3] +
b[2] * a[4] -
b[3] * a[5] -
b[7] * a[6] -
b[6] * a[7],
b[2] * a[0] + b[0] * a[2] - b[6] * a[3] + b[3] * a[6],
b[3] * a[0] + b[6] * a[2] + b[0] * a[3] - b[2] * a[6],
b[4] * a[0] + b[7] * a[3] + b[0] * a[4] + b[3] * a[7],
b[5] * a[0] + b[7] * a[2] + b[0] * a[5] + b[2] * a[7],
b[6] * a[0] + b[0] * a[6],
b[7] * a[0] + b[0] * a[7],
];
export const norm = (a: NVector): number =>
Math.sqrt(Math.abs(a[0] * a[0] - a[2] * a[2] - a[3] * a[3] + a[6] * a[6]));
export const inorm = (a: NVector): number =>
Math.sqrt(Math.abs(a[7] * a[7] - a[5] * a[5] - a[4] * a[4] + a[1] * a[1]));
export const normalized = (a: NVector): NVector => {
const n = norm(a);
if (n === 0 || n === 1) {
return a;
}
const sign = a[6] < 0 ? -1 : 1;
return mul(a, sign / n);
};
export const inormalized = (a: NVector): NVector => {
const n = inorm(a);
if (n === 0 || n === 1) {
return a;
}
return mul(a, 1 / n);
};
const isNumber = (a: any): a is number => typeof a === "number";
export const E0: NVector = nvector(1, 1);
export const E1: NVector = nvector(1, 2);
export const E2: NVector = nvector(1, 3);
export const E01: NVector = nvector(1, 4);
export const E20: NVector = nvector(1, 5);
export const E12: NVector = nvector(1, 6);
export const E012: NVector = nvector(1, 7);
export const I = E012;