1061 lines
25 KiB
TypeScript

import type { ExcalidrawBindableElement } from "../../excalidraw/element/types";
import {
addVectors,
distance2d,
rotatePoint,
scaleVector,
subtractVectors,
} from "../../excalidraw/math";
import type { LineSegment } from "../bbox";
import { crossProduct } from "../bbox";
import type {
Point,
Line,
Polygon,
Curve,
Ellipse,
Polycurve,
Polyline,
} from "./shape";
const DEFAULT_THRESHOLD = 10e-5;
/**
* utils
*/
// the two vectors are ao and bo
export const cross = (
a: Readonly<Point>,
b: Readonly<Point>,
o: Readonly<Point>,
) => {
return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]);
};
export const dot = (
a: Readonly<Point>,
b: Readonly<Point>,
o: Readonly<Point>,
) => {
return (a[0] - o[0]) * (b[0] - o[0]) + (a[1] - o[1]) * (b[1] - o[1]);
};
export const isClosed = (polygon: Polygon) => {
const first = polygon[0];
const last = polygon[polygon.length - 1];
return first[0] === last[0] && first[1] === last[1];
};
export const close = (polygon: Polygon) => {
return isClosed(polygon) ? polygon : [...polygon, polygon[0]];
};
/**
* angles
*/
// convert radians to degress
export const angleToDegrees = (angle: number) => {
const theta = (angle * 180) / Math.PI;
return theta < 0 ? 360 + theta : theta;
};
// convert degrees to radians
export const angleToRadians = (angle: number) => {
return (angle / 180) * Math.PI;
};
// return the angle of reflection given an angle of incidence and a surface angle in degrees
export const angleReflect = (incidenceAngle: number, surfaceAngle: number) => {
const a = surfaceAngle * 2 - incidenceAngle;
return a >= 360 ? a - 360 : a < 0 ? a + 360 : a;
};
/**
* points
*/
const rotate = (point: Point, angle: number): Point => {
return [
point[0] * Math.cos(angle) - point[1] * Math.sin(angle),
point[0] * Math.sin(angle) + point[1] * Math.cos(angle),
];
};
const isOrigin = (point: Point) => {
return point[0] === 0 && point[1] === 0;
};
// rotate a given point about a given origin at the given angle
export const pointRotate = (
point: Point,
angle: number,
origin?: Point,
): Point => {
const r = angleToRadians(angle);
if (!origin || isOrigin(origin)) {
return rotate(point, r);
}
return rotate(point.map((c, i) => c - origin[i]) as Point, r).map(
(c, i) => c + origin[i],
) as Point;
};
// translate a point by an angle (in degrees) and distance
export const pointTranslate = (point: Point, angle = 0, distance = 0) => {
const r = angleToRadians(angle);
return [
point[0] + distance * Math.cos(r),
point[1] + distance * Math.sin(r),
] as Point;
};
export const pointInverse = (point: Point) => {
return [-point[0], -point[1]] as Point;
};
export const pointAdd = (pointA: Point, pointB: Point): Point => {
return [pointA[0] + pointB[0], pointA[1] + pointB[1]];
};
export const distanceToPoint = (p1: Point, p2: Point) => {
return distance2d(...p1, ...p2);
};
/**
* lines
*/
// return the angle of a line, in degrees
export const lineAngle = (line: Line) => {
return angleToDegrees(
Math.atan2(line[1][1] - line[0][1], line[1][0] - line[0][0]),
);
};
// get the distance between the endpoints of a line segment
export const lineLength = (line: Line) => {
return Math.sqrt(
Math.pow(line[1][0] - line[0][0], 2) + Math.pow(line[1][1] - line[0][1], 2),
);
};
// get the midpoint of a line segment
export const lineMidpoint = (line: Line) => {
return [
(line[0][0] + line[1][0]) / 2,
(line[0][1] + line[1][1]) / 2,
] as Point;
};
// return the coordinates resulting from rotating the given line about an origin by an angle in degrees
// note that when the origin is not given, the midpoint of the given line is used as the origin
export const lineRotate = (line: Line, angle: number, origin?: Point): Line => {
return line.map((point) =>
pointRotate(point, angle, origin || lineMidpoint(line)),
) as Line;
};
// returns the coordinates resulting from translating a line by an angle in degrees and a distance.
export const lineTranslate = (line: Line, angle: number, distance: number) => {
return line.map((point) => pointTranslate(point, angle, distance));
};
export const lineInterpolate = (line: Line, clamp = false) => {
const [[x1, y1], [x2, y2]] = line;
return (t: number) => {
const t0 = clamp ? (t < 0 ? 0 : t > 1 ? 1 : t) : t;
return [(x2 - x1) * t0 + x1, (y2 - y1) * t0 + y1] as Point;
};
};
/**
* curves
*/
function clone(p: Point): Point {
return [...p] as Point;
}
export const curveToBezier = (
pointsIn: readonly Point[],
curveTightness = 0,
): Point[] => {
const len = pointsIn.length;
if (len < 3) {
throw new Error("A curve must have at least three points.");
}
const out: Point[] = [];
if (len === 3) {
out.push(
clone(pointsIn[0]),
clone(pointsIn[1]),
clone(pointsIn[2]),
clone(pointsIn[2]),
);
} else {
const points: Point[] = [];
points.push(pointsIn[0], pointsIn[0]);
for (let i = 1; i < pointsIn.length; i++) {
points.push(pointsIn[i]);
if (i === pointsIn.length - 1) {
points.push(pointsIn[i]);
}
}
const b: Point[] = [];
const s = 1 - curveTightness;
out.push(clone(points[0]));
for (let i = 1; i + 2 < points.length; i++) {
const cachedVertArray = points[i];
b[0] = [cachedVertArray[0], cachedVertArray[1]];
b[1] = [
cachedVertArray[0] + (s * points[i + 1][0] - s * points[i - 1][0]) / 6,
cachedVertArray[1] + (s * points[i + 1][1] - s * points[i - 1][1]) / 6,
];
b[2] = [
points[i + 1][0] + (s * points[i][0] - s * points[i + 2][0]) / 6,
points[i + 1][1] + (s * points[i][1] - s * points[i + 2][1]) / 6,
];
b[3] = [points[i + 1][0], points[i + 1][1]];
out.push(b[1], b[2], b[3]);
}
}
return out;
};
export const curveRotate = (curve: Curve, angle: number, origin: Point) => {
return curve.map((p) => pointRotate(p, angle, origin));
};
export const cubicBezierPoint = (t: number, controlPoints: Curve): Point => {
const [p0, p1, p2, p3] = controlPoints;
const x =
Math.pow(1 - t, 3) * p0[0] +
3 * Math.pow(1 - t, 2) * t * p1[0] +
3 * (1 - t) * Math.pow(t, 2) * p2[0] +
Math.pow(t, 3) * p3[0];
const y =
Math.pow(1 - t, 3) * p0[1] +
3 * Math.pow(1 - t, 2) * t * p1[1] +
3 * (1 - t) * Math.pow(t, 2) * p2[1] +
Math.pow(t, 3) * p3[1];
return [x, y];
};
const solveCubicEquation = (a: number, b: number, c: number, d: number) => {
// This function solves the cubic equation ax^3 + bx^2 + cx + d = 0
const roots: number[] = [];
const discriminant =
18 * a * b * c * d -
4 * Math.pow(b, 3) * d +
Math.pow(b, 2) * Math.pow(c, 2) -
4 * a * Math.pow(c, 3) -
27 * Math.pow(a, 2) * Math.pow(d, 2);
if (discriminant >= 0) {
const C = Math.cbrt((discriminant + Math.sqrt(discriminant)) / 2);
const D = Math.cbrt((discriminant - Math.sqrt(discriminant)) / 2);
const root1 = (-b - C - D) / (3 * a);
const root2 = (-b + (C + D) / 2) / (3 * a);
const root3 = (-b + (C + D) / 2) / (3 * a);
roots.push(root1, root2, root3);
} else {
const realPart = -b / (3 * a);
const root1 =
2 * Math.sqrt(-b / (3 * a)) * Math.cos(Math.acos(realPart) / 3);
const root2 =
2 *
Math.sqrt(-b / (3 * a)) *
Math.cos((Math.acos(realPart) + 2 * Math.PI) / 3);
const root3 =
2 *
Math.sqrt(-b / (3 * a)) *
Math.cos((Math.acos(realPart) + 4 * Math.PI) / 3);
roots.push(root1, root2, root3);
}
return roots;
};
const findClosestParameter = (point: Point, controlPoints: Curve) => {
// This function finds the parameter t that minimizes the distance between the point
// and any point on the cubic Bezier curve.
const [p0, p1, p2, p3] = controlPoints;
// Use the direct formula to find the parameter t
const a = p3[0] - 3 * p2[0] + 3 * p1[0] - p0[0];
const b = 3 * p2[0] - 6 * p1[0] + 3 * p0[0];
const c = 3 * p1[0] - 3 * p0[0];
const d = p0[0] - point[0];
const rootsX = solveCubicEquation(a, b, c, d);
// Do the same for the y-coordinate
const e = p3[1] - 3 * p2[1] + 3 * p1[1] - p0[1];
const f = 3 * p2[1] - 6 * p1[1] + 3 * p0[1];
const g = 3 * p1[1] - 3 * p0[1];
const h = p0[1] - point[1];
const rootsY = solveCubicEquation(e, f, g, h);
// Select the real root that is between 0 and 1 (inclusive)
const validRootsX = rootsX.filter((root) => root >= 0 && root <= 1);
const validRootsY = rootsY.filter((root) => root >= 0 && root <= 1);
if (validRootsX.length === 0 || validRootsY.length === 0) {
// No valid roots found, use the midpoint as a fallback
return 0.5;
}
// Choose the parameter t that minimizes the distance
let minDistance = Infinity;
let closestT = 0;
for (const rootX of validRootsX) {
for (const rootY of validRootsY) {
const distance = Math.sqrt(
(rootX - point[0]) ** 2 + (rootY - point[1]) ** 2,
);
if (distance < minDistance) {
minDistance = distance;
closestT = (rootX + rootY) / 2; // Use the average for a smoother result
}
}
}
return closestT;
};
export const cubicBezierDistance = (point: Point, controlPoints: Curve) => {
// Calculate the closest point on the Bezier curve to the given point
const t = findClosestParameter(point, controlPoints);
// Calculate the coordinates of the closest point on the curve
const [closestX, closestY] = cubicBezierPoint(t, controlPoints);
// Calculate the distance between the given point and the closest point on the curve
const distance = Math.sqrt(
(point[0] - closestX) ** 2 + (point[1] - closestY) ** 2,
);
return distance;
};
/**
* polygons
*/
export const polygonRotate = (
polygon: Polygon,
angle: number,
origin: Point,
) => {
return polygon.map((p) => pointRotate(p, angle, origin));
};
export const polygonBounds = (polygon: Polygon) => {
let xMin = Infinity;
let xMax = -Infinity;
let yMin = Infinity;
let yMax = -Infinity;
for (let i = 0, l = polygon.length; i < l; i++) {
const p = polygon[i];
const x = p[0];
const y = p[1];
if (x != null && isFinite(x) && y != null && isFinite(y)) {
if (x < xMin) {
xMin = x;
}
if (x > xMax) {
xMax = x;
}
if (y < yMin) {
yMin = y;
}
if (y > yMax) {
yMax = y;
}
}
}
return [
[xMin, yMin],
[xMax, yMax],
] as [Point, Point];
};
export const polygonCentroid = (vertices: Point[]) => {
let a = 0;
let x = 0;
let y = 0;
const l = vertices.length;
for (let i = 0; i < l; i++) {
const s = i === l - 1 ? 0 : i + 1;
const v0 = vertices[i];
const v1 = vertices[s];
const f = v0[0] * v1[1] - v1[0] * v0[1];
a += f;
x += (v0[0] + v1[0]) * f;
y += (v0[1] + v1[1]) * f;
}
const d = a * 3;
return [x / d, y / d] as Point;
};
export const polygonScale = (
polygon: Polygon,
scale: number,
origin?: Point,
) => {
if (!origin) {
origin = polygonCentroid(polygon);
}
const p: Polygon = [];
for (let i = 0, l = polygon.length; i < l; i++) {
const v = polygon[i];
const d = lineLength([origin, v]);
const a = lineAngle([origin, v]);
p[i] = pointTranslate(origin, a, d * scale);
}
return p;
};
export const polygonScaleX = (
polygon: Polygon,
scale: number,
origin?: Point,
) => {
if (!origin) {
origin = polygonCentroid(polygon);
}
const p: Polygon = [];
for (let i = 0, l = polygon.length; i < l; i++) {
const v = polygon[i];
const d = lineLength([origin, v]);
const a = lineAngle([origin, v]);
const t = pointTranslate(origin, a, d * scale);
p[i] = [t[0], v[1]];
}
return p;
};
export const polygonScaleY = (
polygon: Polygon,
scale: number,
origin?: Point,
) => {
if (!origin) {
origin = polygonCentroid(polygon);
}
const p: Polygon = [];
for (let i = 0, l = polygon.length; i < l; i++) {
const v = polygon[i];
const d = lineLength([origin, v]);
const a = lineAngle([origin, v]);
const t = pointTranslate(origin, a, d * scale);
p[i] = [v[0], t[1]];
}
return p;
};
export const polygonReflectX = (polygon: Polygon, reflectFactor = 1) => {
const [[min], [max]] = polygonBounds(polygon);
const p: Point[] = [];
for (let i = 0, l = polygon.length; i < l; i++) {
const [x, y] = polygon[i];
const r: Point = [min + max - x, y];
if (reflectFactor === 0) {
p[i] = [x, y];
} else if (reflectFactor === 1) {
p[i] = r;
} else {
const t = lineInterpolate([[x, y], r]);
p[i] = t(Math.max(Math.min(reflectFactor, 1), 0));
}
}
return p;
};
export const polygonReflectY = (polygon: Polygon, reflectFactor = 1) => {
const [[, min], [, max]] = polygonBounds(polygon);
const p: Point[] = [];
for (let i = 0, l = polygon.length; i < l; i++) {
const [x, y] = polygon[i];
const r: Point = [x, min + max - y];
if (reflectFactor === 0) {
p[i] = [x, y];
} else if (reflectFactor === 1) {
p[i] = r;
} else {
const t = lineInterpolate([[x, y], r]);
p[i] = t(Math.max(Math.min(reflectFactor, 1), 0));
}
}
return p;
};
export const polygonTranslate = (
polygon: Polygon,
angle: number,
distance: number,
) => {
return polygon.map((p) => pointTranslate(p, angle, distance));
};
/**
* ellipses
*/
export const ellipseAxes = (ellipse: Ellipse) => {
const widthGreaterThanHeight = ellipse.halfWidth > ellipse.halfHeight;
const majorAxis = widthGreaterThanHeight
? ellipse.halfWidth * 2
: ellipse.halfHeight * 2;
const minorAxis = widthGreaterThanHeight
? ellipse.halfHeight * 2
: ellipse.halfWidth * 2;
return {
majorAxis,
minorAxis,
};
};
export const ellipseFocusToCenter = (ellipse: Ellipse) => {
const { majorAxis, minorAxis } = ellipseAxes(ellipse);
return Math.sqrt(majorAxis ** 2 - minorAxis ** 2);
};
export const ellipseExtremes = (ellipse: Ellipse) => {
const { center, angle } = ellipse;
const { majorAxis, minorAxis } = ellipseAxes(ellipse);
const cos = Math.cos(angle);
const sin = Math.sin(angle);
const sqSum = majorAxis ** 2 + minorAxis ** 2;
const sqDiff = (majorAxis ** 2 - minorAxis ** 2) * Math.cos(2 * angle);
const yMax = Math.sqrt((sqSum - sqDiff) / 2);
const xAtYMax =
(yMax * sqSum * sin * cos) /
(majorAxis ** 2 * sin ** 2 + minorAxis ** 2 * cos ** 2);
const xMax = Math.sqrt((sqSum + sqDiff) / 2);
const yAtXMax =
(xMax * sqSum * sin * cos) /
(majorAxis ** 2 * cos ** 2 + minorAxis ** 2 * sin ** 2);
return [
pointAdd([xAtYMax, yMax], center),
pointAdd(pointInverse([xAtYMax, yMax]), center),
pointAdd([xMax, yAtXMax], center),
pointAdd([xMax, yAtXMax], center),
];
};
export const pointRelativeToCenter = (
point: Point,
center: Point,
angle: number,
): Point => {
const translated = pointAdd(point, pointInverse(center));
const rotated = pointRotate(translated, -angleToDegrees(angle));
return rotated;
};
/**
* relationships
*/
const topPointFirst = (line: Line) => {
return line[1][1] > line[0][1] ? line : [line[1], line[0]];
};
export const pointLeftofLine = (point: Point, line: Line) => {
const t = topPointFirst(line);
return cross(point, t[1], t[0]) < 0;
};
export const pointRightofLine = (point: Point, line: Line) => {
const t = topPointFirst(line);
return cross(point, t[1], t[0]) > 0;
};
export const distanceToSegment = (point: Point, line: Line) => {
const [x, y] = point;
const [[x1, y1], [x2, y2]] = line;
const A = x - x1;
const B = y - y1;
const C = x2 - x1;
const D = y2 - y1;
const dot = A * C + B * D;
const len_sq = C * C + D * D;
let param = -1;
if (len_sq !== 0) {
param = dot / len_sq;
}
let xx;
let yy;
if (param < 0) {
xx = x1;
yy = y1;
} else if (param > 1) {
xx = x2;
yy = y2;
} else {
xx = x1 + param * C;
yy = y1 + param * D;
}
const dx = x - xx;
const dy = y - yy;
return Math.sqrt(dx * dx + dy * dy);
};
export const pointOnLine = (
point: Point,
line: Line,
threshold = DEFAULT_THRESHOLD,
) => {
const distance = distanceToSegment(point, line);
if (distance === 0) {
return true;
}
return distance < threshold;
};
export const pointOnPolyline = (
point: Point,
polyline: Polyline,
threshold = DEFAULT_THRESHOLD,
) => {
return polyline.some((line) => pointOnLine(point, line, threshold));
};
export const lineIntersectsLine = (lineA: Line, lineB: Line) => {
const [[a0x, a0y], [a1x, a1y]] = lineA;
const [[b0x, b0y], [b1x, b1y]] = lineB;
// shared points
if (a0x === b0x && a0y === b0y) {
return true;
}
if (a1x === b1x && a1y === b1y) {
return true;
}
// point on line
if (pointOnLine(lineA[0], lineB) || pointOnLine(lineA[1], lineB)) {
return true;
}
if (pointOnLine(lineB[0], lineA) || pointOnLine(lineB[1], lineA)) {
return true;
}
const denom = (b1y - b0y) * (a1x - a0x) - (b1x - b0x) * (a1y - a0y);
if (denom === 0) {
return false;
}
const deltaY = a0y - b0y;
const deltaX = a0x - b0x;
const numer0 = (b1x - b0x) * deltaY - (b1y - b0y) * deltaX;
const numer1 = (a1x - a0x) * deltaY - (a1y - a0y) * deltaX;
const quotA = numer0 / denom;
const quotB = numer1 / denom;
return quotA > 0 && quotA < 1 && quotB > 0 && quotB < 1;
};
export const lineIntersectsPolygon = (line: Line, polygon: Polygon) => {
let intersects = false;
const closed = close(polygon);
for (let i = 0, l = closed.length - 1; i < l; i++) {
const v0 = closed[i];
const v1 = closed[i + 1];
if (
lineIntersectsLine(line, [v0, v1]) ||
(pointOnLine(v0, line) && pointOnLine(v1, line))
) {
intersects = true;
break;
}
}
return intersects;
};
export const pointInBezierEquation = (
p0: Point,
p1: Point,
p2: Point,
p3: Point,
[mx, my]: Point,
lineThreshold: number,
) => {
// B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
const equation = (t: number, idx: number) =>
Math.pow(1 - t, 3) * p3[idx] +
3 * t * Math.pow(1 - t, 2) * p2[idx] +
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
p0[idx] * Math.pow(t, 3);
const lineSegmentPoints: Point[] = [];
let t = 0;
while (t <= 1.0) {
const tx = equation(t, 0);
const ty = equation(t, 1);
const diff = Math.sqrt(Math.pow(tx - mx, 2) + Math.pow(ty - my, 2));
if (diff < lineThreshold) {
return true;
}
lineSegmentPoints.push([tx, ty]);
t += 0.1;
}
// check the distance from line segments to the given point
return false;
};
export const cubicBezierEquation = (curve: Curve) => {
const [p0, p1, p2, p3] = curve;
// B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
return (t: number, idx: number) =>
Math.pow(1 - t, 3) * p3[idx] +
3 * t * Math.pow(1 - t, 2) * p2[idx] +
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
p0[idx] * Math.pow(t, 3);
};
export const polyLineFromCurve = (curve: Curve, segments = 10): Polyline => {
const equation = cubicBezierEquation(curve);
let startingPoint = [equation(0, 0), equation(0, 1)] as Point;
const lineSegments: Polyline = [];
let t = 0;
const increment = 1 / segments;
for (let i = 0; i < segments; i++) {
t += increment;
if (t <= 1) {
const nextPoint: Point = [equation(t, 0), equation(t, 1)];
lineSegments.push([startingPoint, nextPoint]);
startingPoint = nextPoint;
}
}
return lineSegments;
};
export const pointOnCurve = (
point: Point,
curve: Curve,
threshold = DEFAULT_THRESHOLD,
) => {
return pointOnPolyline(point, polyLineFromCurve(curve), threshold);
};
export const pointOnPolycurve = (
point: Point,
polycurve: Polycurve,
threshold = DEFAULT_THRESHOLD,
) => {
return polycurve.some((curve) => pointOnCurve(point, curve, threshold));
};
export const pointInPolygon = (point: Point, polygon: Polygon) => {
const x = point[0];
const y = point[1];
let inside = false;
for (let i = 0, j = polygon.length - 1; i < polygon.length; j = i++) {
const xi = polygon[i][0];
const yi = polygon[i][1];
const xj = polygon[j][0];
const yj = polygon[j][1];
if (
((yi > y && yj <= y) || (yi <= y && yj > y)) &&
x < ((xj - xi) * (y - yi)) / (yj - yi) + xi
) {
inside = !inside;
}
}
return inside;
};
export const pointOnPolygon = (
point: Point,
polygon: Polygon,
threshold = DEFAULT_THRESHOLD,
) => {
let on = false;
const closed = close(polygon);
for (let i = 0, l = closed.length - 1; i < l; i++) {
if (pointOnLine(point, [closed[i], closed[i + 1]], threshold)) {
on = true;
break;
}
}
return on;
};
export const polygonInPolygon = (polygonA: Polygon, polygonB: Polygon) => {
let inside = true;
const closed = close(polygonA);
for (let i = 0, l = closed.length - 1; i < l; i++) {
const v0 = closed[i];
// Points test
if (!pointInPolygon(v0, polygonB)) {
inside = false;
break;
}
// Lines test
if (lineIntersectsPolygon([v0, closed[i + 1]], polygonB)) {
inside = false;
break;
}
}
return inside;
};
export const polygonIntersectPolygon = (
polygonA: Polygon,
polygonB: Polygon,
) => {
let intersects = false;
let onCount = 0;
const closed = close(polygonA);
for (let i = 0, l = closed.length - 1; i < l; i++) {
const v0 = closed[i];
const v1 = closed[i + 1];
if (lineIntersectsPolygon([v0, v1], polygonB)) {
intersects = true;
break;
}
if (pointOnPolygon(v0, polygonB)) {
++onCount;
}
if (onCount === 2) {
intersects = true;
break;
}
}
return intersects;
};
const distanceToEllipse = (point: Point, ellipse: Ellipse) => {
const { angle, halfWidth, halfHeight, center } = ellipse;
const a = halfWidth;
const b = halfHeight;
const [rotatedPointX, rotatedPointY] = pointRelativeToCenter(
point,
center,
angle,
);
const px = Math.abs(rotatedPointX);
const py = Math.abs(rotatedPointY);
let tx = 0.707;
let ty = 0.707;
for (let i = 0; i < 3; i++) {
const x = a * tx;
const y = b * ty;
const ex = ((a * a - b * b) * tx ** 3) / a;
const ey = ((b * b - a * a) * ty ** 3) / b;
const rx = x - ex;
const ry = y - ey;
const qx = px - ex;
const qy = py - ey;
const r = Math.hypot(ry, rx);
const q = Math.hypot(qy, qx);
tx = Math.min(1, Math.max(0, ((qx * r) / q + ex) / a));
ty = Math.min(1, Math.max(0, ((qy * r) / q + ey) / b));
const t = Math.hypot(ty, tx);
tx /= t;
ty /= t;
}
const [minX, minY] = [
a * tx * Math.sign(rotatedPointX),
b * ty * Math.sign(rotatedPointY),
];
return distanceToPoint([rotatedPointX, rotatedPointY], [minX, minY]);
};
export const pointOnEllipse = (
point: Point,
ellipse: Ellipse,
threshold = DEFAULT_THRESHOLD,
) => {
return distanceToEllipse(point, ellipse) <= threshold;
};
export const pointInEllipse = (point: Point, ellipse: Ellipse) => {
const { center, angle, halfWidth, halfHeight } = ellipse;
const [rotatedPointX, rotatedPointY] = pointRelativeToCenter(
point,
center,
angle,
);
return (
(rotatedPointX / halfWidth) * (rotatedPointX / halfWidth) +
(rotatedPointY / halfHeight) * (rotatedPointY / halfHeight) <=
1
);
};
/**
* Calculates the point two line segments with a definite start and end point
* intersect at.
*/
export const segmentsIntersectAt = (
a: Readonly<LineSegment>,
b: Readonly<LineSegment>,
): Point | null => {
const r = subtractVectors(a[1], a[0]);
const s = subtractVectors(b[1], b[0]);
const denominator = crossProduct(r, s);
if (denominator === 0) {
return null;
}
const i = subtractVectors(b[0], a[0]);
const u = crossProduct(i, r) / denominator;
const t = crossProduct(i, s) / denominator;
if (u === 0) {
return null;
}
const p = addVectors(a[0], scaleVector(r, t));
if (t >= 0 && t < 1 && u >= 0 && u < 1) {
return p;
}
return null;
};
/**
* Determine intersection of a rectangular shaped element and a
* line segment.
*
* @param element The rectangular element to test against
* @param segment The segment intersecting the element
* @param gap Optional value to inflate the shape before testing
* @returns An array of intersections
*/
// TODO: Replace with final rounded rectangle code
export const segmentIntersectRectangleElement = (
element: ExcalidrawBindableElement,
segment: LineSegment,
gap: number = 0,
): Point[] => {
const bounds = [
element.x - gap,
element.y - gap,
element.x + element.width + gap,
element.y + element.height + gap,
];
const center = [
(bounds[0] + bounds[2]) / 2,
(bounds[1] + bounds[3]) / 2,
] as Point;
return [
[
rotatePoint([bounds[0], bounds[1]], center, element.angle),
rotatePoint([bounds[2], bounds[1]], center, element.angle),
] as LineSegment,
[
rotatePoint([bounds[2], bounds[1]], center, element.angle),
rotatePoint([bounds[2], bounds[3]], center, element.angle),
] as LineSegment,
[
rotatePoint([bounds[2], bounds[3]], center, element.angle),
rotatePoint([bounds[0], bounds[3]], center, element.angle),
] as LineSegment,
[
rotatePoint([bounds[0], bounds[3]], center, element.angle),
rotatePoint([bounds[0], bounds[1]], center, element.angle),
] as LineSegment,
]
.map((s) => segmentsIntersectAt(segment, s))
.filter((i): i is Point => !!i);
};