aa221837fc
Co-authored-by: dwelle <luzar.david@gmail.com>
320 lines
8.5 KiB
TypeScript
320 lines
8.5 KiB
TypeScript
import { Point } from "./types";
|
||
import { LINE_CONFIRM_THRESHOLD } from "./constants";
|
||
import { ExcalidrawLinearElement } from "./element/types";
|
||
|
||
export const rotate = (
|
||
x1: number,
|
||
y1: number,
|
||
x2: number,
|
||
y2: number,
|
||
angle: number,
|
||
): [number, number] =>
|
||
// 𝑎′𝑥=(𝑎𝑥−𝑐𝑥)cos𝜃−(𝑎𝑦−𝑐𝑦)sin𝜃+𝑐𝑥
|
||
// 𝑎′𝑦=(𝑎𝑥−𝑐𝑥)sin𝜃+(𝑎𝑦−𝑐𝑦)cos𝜃+𝑐𝑦.
|
||
// https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line
|
||
[
|
||
(x1 - x2) * Math.cos(angle) - (y1 - y2) * Math.sin(angle) + x2,
|
||
(x1 - x2) * Math.sin(angle) + (y1 - y2) * Math.cos(angle) + y2,
|
||
];
|
||
|
||
export const rotatePoint = (
|
||
point: Point,
|
||
center: Point,
|
||
angle: number,
|
||
): [number, number] => rotate(point[0], point[1], center[0], center[1], angle);
|
||
|
||
export const adjustXYWithRotation = (
|
||
sides: {
|
||
n?: boolean;
|
||
e?: boolean;
|
||
s?: boolean;
|
||
w?: boolean;
|
||
},
|
||
x: number,
|
||
y: number,
|
||
angle: number,
|
||
deltaX1: number,
|
||
deltaY1: number,
|
||
deltaX2: number,
|
||
deltaY2: number,
|
||
): [number, number] => {
|
||
const cos = Math.cos(angle);
|
||
const sin = Math.sin(angle);
|
||
if (sides.e && sides.w) {
|
||
x += deltaX1 + deltaX2;
|
||
} else if (sides.e) {
|
||
x += deltaX1 * (1 + cos);
|
||
y += deltaX1 * sin;
|
||
x += deltaX2 * (1 - cos);
|
||
y += deltaX2 * -sin;
|
||
} else if (sides.w) {
|
||
x += deltaX1 * (1 - cos);
|
||
y += deltaX1 * -sin;
|
||
x += deltaX2 * (1 + cos);
|
||
y += deltaX2 * sin;
|
||
}
|
||
|
||
if (sides.n && sides.s) {
|
||
y += deltaY1 + deltaY2;
|
||
} else if (sides.n) {
|
||
x += deltaY1 * sin;
|
||
y += deltaY1 * (1 - cos);
|
||
x += deltaY2 * -sin;
|
||
y += deltaY2 * (1 + cos);
|
||
} else if (sides.s) {
|
||
x += deltaY1 * -sin;
|
||
y += deltaY1 * (1 + cos);
|
||
x += deltaY2 * sin;
|
||
y += deltaY2 * (1 - cos);
|
||
}
|
||
return [x, y];
|
||
};
|
||
|
||
export const getFlipAdjustment = (
|
||
side: "n" | "s" | "w" | "e" | "nw" | "ne" | "sw" | "se",
|
||
nextWidth: number,
|
||
nextHeight: number,
|
||
nextX1: number,
|
||
nextY1: number,
|
||
nextX2: number,
|
||
nextY2: number,
|
||
finalX1: number,
|
||
finalY1: number,
|
||
finalX2: number,
|
||
finalY2: number,
|
||
needsRotation: boolean,
|
||
angle: number,
|
||
): [number, number] => {
|
||
const cos = Math.cos(angle);
|
||
const sin = Math.sin(angle);
|
||
let flipDiffX = 0;
|
||
let flipDiffY = 0;
|
||
if (nextWidth < 0) {
|
||
if (side === "e" || side === "ne" || side === "se") {
|
||
if (needsRotation) {
|
||
flipDiffX += (finalX2 - nextX1) * cos;
|
||
flipDiffY += (finalX2 - nextX1) * sin;
|
||
} else {
|
||
flipDiffX += finalX2 - nextX1;
|
||
}
|
||
}
|
||
if (side === "w" || side === "nw" || side === "sw") {
|
||
if (needsRotation) {
|
||
flipDiffX += (finalX1 - nextX2) * cos;
|
||
flipDiffY += (finalX1 - nextX2) * sin;
|
||
} else {
|
||
flipDiffX += finalX1 - nextX2;
|
||
}
|
||
}
|
||
}
|
||
if (nextHeight < 0) {
|
||
if (side === "s" || side === "se" || side === "sw") {
|
||
if (needsRotation) {
|
||
flipDiffY += (finalY2 - nextY1) * cos;
|
||
flipDiffX += (finalY2 - nextY1) * -sin;
|
||
} else {
|
||
flipDiffY += finalY2 - nextY1;
|
||
}
|
||
}
|
||
if (side === "n" || side === "ne" || side === "nw") {
|
||
if (needsRotation) {
|
||
flipDiffY += (finalY1 - nextY2) * cos;
|
||
flipDiffX += (finalY1 - nextY2) * -sin;
|
||
} else {
|
||
flipDiffY += finalY1 - nextY2;
|
||
}
|
||
}
|
||
}
|
||
return [flipDiffX, flipDiffY];
|
||
};
|
||
|
||
export const getPointOnAPath = (point: Point, path: Point[]) => {
|
||
const [px, py] = point;
|
||
const [start, ...other] = path;
|
||
let [lastX, lastY] = start;
|
||
let kLine: number = 0;
|
||
let idx: number = 0;
|
||
|
||
// if any item in the array is true, it means that a point is
|
||
// on some segment of a line based path
|
||
const retVal = other.some(([x2, y2], i) => {
|
||
// we always take a line when dealing with line segments
|
||
const x1 = lastX;
|
||
const y1 = lastY;
|
||
|
||
lastX = x2;
|
||
lastY = y2;
|
||
|
||
// if a point is not within the domain of the line segment
|
||
// it is not on the line segment
|
||
if (px < x1 || px > x2) {
|
||
return false;
|
||
}
|
||
|
||
// check if all points lie on the same line
|
||
// y1 = kx1 + b, y2 = kx2 + b
|
||
// y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1)
|
||
|
||
// coefficient for the line (p0, p1)
|
||
const kL = (y2 - y1) / (x2 - x1);
|
||
|
||
// coefficient for the line segment (p0, point)
|
||
const kP1 = (py - y1) / (px - x1);
|
||
|
||
// coefficient for the line segment (point, p1)
|
||
const kP2 = (py - y2) / (px - x2);
|
||
|
||
// because we are basing both lines from the same starting point
|
||
// the only option for collinearity is having same coefficients
|
||
|
||
// using it for floating point comparisons
|
||
const epsilon = 0.3;
|
||
|
||
// if coefficient is more than an arbitrary epsilon,
|
||
// these lines are nor collinear
|
||
if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) {
|
||
return false;
|
||
}
|
||
|
||
// store the coefficient because we are goint to need it
|
||
kLine = kL;
|
||
idx = i;
|
||
|
||
return true;
|
||
});
|
||
|
||
// Return a coordinate that is always on the line segment
|
||
if (retVal === true) {
|
||
return { x: point[0], y: kLine * point[0], segment: idx };
|
||
}
|
||
|
||
return null;
|
||
};
|
||
|
||
export const distance2d = (x1: number, y1: number, x2: number, y2: number) => {
|
||
const xd = x2 - x1;
|
||
const yd = y2 - y1;
|
||
return Math.hypot(xd, yd);
|
||
};
|
||
|
||
export const centerPoint = (a: Point, b: Point): Point => {
|
||
return [(a[0] + b[0]) / 2, (a[1] + b[1]) / 2];
|
||
};
|
||
|
||
// Checks if the first and last point are close enough
|
||
// to be considered a loop
|
||
export const isPathALoop = (
|
||
points: ExcalidrawLinearElement["points"],
|
||
): boolean => {
|
||
if (points.length >= 3) {
|
||
const [firstPoint, lastPoint] = [points[0], points[points.length - 1]];
|
||
return (
|
||
distance2d(firstPoint[0], firstPoint[1], lastPoint[0], lastPoint[1]) <=
|
||
LINE_CONFIRM_THRESHOLD
|
||
);
|
||
}
|
||
return false;
|
||
};
|
||
|
||
// Draw a line from the point to the right till infiinty
|
||
// Check how many lines of the polygon does this infinite line intersects with
|
||
// If the number of intersections is odd, point is in the polygon
|
||
export const isPointInPolygon = (
|
||
points: Point[],
|
||
x: number,
|
||
y: number,
|
||
): boolean => {
|
||
const vertices = points.length;
|
||
|
||
// There must be at least 3 vertices in polygon
|
||
if (vertices < 3) {
|
||
return false;
|
||
}
|
||
const extreme: Point = [Number.MAX_SAFE_INTEGER, y];
|
||
const p: Point = [x, y];
|
||
let count = 0;
|
||
for (let i = 0; i < vertices; i++) {
|
||
const current = points[i];
|
||
const next = points[(i + 1) % vertices];
|
||
if (doSegmentsIntersect(current, next, p, extreme)) {
|
||
if (orderedColinearOrientation(current, p, next) === 0) {
|
||
return isPointWithinBounds(current, p, next);
|
||
}
|
||
count++;
|
||
}
|
||
}
|
||
// true if count is off
|
||
return count % 2 === 1;
|
||
};
|
||
|
||
// Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
|
||
// This is an approximation to "does `q` lie on a segment `pr`" check.
|
||
const isPointWithinBounds = (p: Point, q: Point, r: Point) => {
|
||
return (
|
||
q[0] <= Math.max(p[0], r[0]) &&
|
||
q[0] >= Math.min(p[0], r[0]) &&
|
||
q[1] <= Math.max(p[1], r[1]) &&
|
||
q[1] >= Math.min(p[1], r[1])
|
||
);
|
||
};
|
||
|
||
// For the ordered points p, q, r, return
|
||
// 0 if p, q, r are colinear
|
||
// 1 if Clockwise
|
||
// 2 if counterclickwise
|
||
const orderedColinearOrientation = (p: Point, q: Point, r: Point) => {
|
||
const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]);
|
||
if (val === 0) {
|
||
return 0;
|
||
}
|
||
return val > 0 ? 1 : 2;
|
||
};
|
||
|
||
// Check is p1q1 intersects with p2q2
|
||
const doSegmentsIntersect = (p1: Point, q1: Point, p2: Point, q2: Point) => {
|
||
const o1 = orderedColinearOrientation(p1, q1, p2);
|
||
const o2 = orderedColinearOrientation(p1, q1, q2);
|
||
const o3 = orderedColinearOrientation(p2, q2, p1);
|
||
const o4 = orderedColinearOrientation(p2, q2, q1);
|
||
|
||
if (o1 !== o2 && o3 !== o4) {
|
||
return true;
|
||
}
|
||
|
||
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
|
||
if (o1 === 0 && isPointWithinBounds(p1, p2, q1)) {
|
||
return true;
|
||
}
|
||
|
||
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
|
||
if (o2 === 0 && isPointWithinBounds(p1, q2, q1)) {
|
||
return true;
|
||
}
|
||
|
||
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
|
||
if (o3 === 0 && isPointWithinBounds(p2, p1, q2)) {
|
||
return true;
|
||
}
|
||
|
||
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
|
||
if (o4 === 0 && isPointWithinBounds(p2, q1, q2)) {
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
};
|
||
|
||
export const getGridPoint = (
|
||
x: number,
|
||
y: number,
|
||
gridSize: number | null,
|
||
): [number, number] => {
|
||
if (gridSize) {
|
||
return [
|
||
Math.round(x / gridSize) * gridSize,
|
||
Math.round(y / gridSize) * gridSize,
|
||
];
|
||
}
|
||
return [x, y];
|
||
};
|