ed6fb60337
* add hint & support multi-line hints * resize from center point using the new resize maths * resize with origin element when lifting alt key * add readonly to elementOriginPosition * add setResizeWithCenterKeyLifted * isResizeFromCenter logic * offsetX and offsetY * simplify equations * creating element from center point * lint * lint * lint * remove revert on key up logic Co-authored-by: dwelle <luzar.david@gmail.com> Co-authored-by: daishi <daishi@axlight.com>
333 lines
8.2 KiB
TypeScript
333 lines
8.2 KiB
TypeScript
import { Point } from "./types";
|
||
import { LINE_CONFIRM_THRESHOLD } from "./constants";
|
||
|
||
// https://stackoverflow.com/a/6853926/232122
|
||
export function distanceBetweenPointAndSegment(
|
||
x: number,
|
||
y: number,
|
||
x1: number,
|
||
y1: number,
|
||
x2: number,
|
||
y2: number,
|
||
) {
|
||
const A = x - x1;
|
||
const B = y - y1;
|
||
const C = x2 - x1;
|
||
const D = y2 - y1;
|
||
|
||
const dot = A * C + B * D;
|
||
const lenSquare = C * C + D * D;
|
||
let param = -1;
|
||
if (lenSquare !== 0) {
|
||
// in case of 0 length line
|
||
param = dot / lenSquare;
|
||
}
|
||
|
||
let xx, yy;
|
||
if (param < 0) {
|
||
xx = x1;
|
||
yy = y1;
|
||
} else if (param > 1) {
|
||
xx = x2;
|
||
yy = y2;
|
||
} else {
|
||
xx = x1 + param * C;
|
||
yy = y1 + param * D;
|
||
}
|
||
|
||
const dx = x - xx;
|
||
const dy = y - yy;
|
||
return Math.hypot(dx, dy);
|
||
}
|
||
|
||
export function rotate(
|
||
x1: number,
|
||
y1: number,
|
||
x2: number,
|
||
y2: number,
|
||
angle: number,
|
||
) {
|
||
// 𝑎′𝑥=(𝑎𝑥−𝑐𝑥)cos𝜃−(𝑎𝑦−𝑐𝑦)sin𝜃+𝑐𝑥
|
||
// 𝑎′𝑦=(𝑎𝑥−𝑐𝑥)sin𝜃+(𝑎𝑦−𝑐𝑦)cos𝜃+𝑐𝑦.
|
||
// https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line
|
||
return [
|
||
(x1 - x2) * Math.cos(angle) - (y1 - y2) * Math.sin(angle) + x2,
|
||
(x1 - x2) * Math.sin(angle) + (y1 - y2) * Math.cos(angle) + y2,
|
||
];
|
||
}
|
||
|
||
const adjustXYWithRotation = (
|
||
side: "n" | "s" | "w" | "e" | "nw" | "ne" | "sw" | "se",
|
||
x: number,
|
||
y: number,
|
||
angle: number,
|
||
deltaX: number,
|
||
deltaY: number,
|
||
isResizeFromCenter: boolean,
|
||
) => {
|
||
const cos = Math.cos(angle);
|
||
const sin = Math.sin(angle);
|
||
deltaX /= 2;
|
||
deltaY /= 2;
|
||
if (side === "e" || side === "ne" || side === "se") {
|
||
if (isResizeFromCenter) {
|
||
x += deltaX;
|
||
} else {
|
||
x += deltaX * (1 - cos);
|
||
y += deltaX * -sin;
|
||
}
|
||
}
|
||
if (side === "s" || side === "sw" || side === "se") {
|
||
if (isResizeFromCenter) {
|
||
y += deltaY;
|
||
} else {
|
||
x += deltaY * sin;
|
||
y += deltaY * (1 - cos);
|
||
}
|
||
}
|
||
if (side === "w" || side === "nw" || side === "sw") {
|
||
if (isResizeFromCenter) {
|
||
x += deltaX;
|
||
} else {
|
||
x += deltaX * (1 + cos);
|
||
y += deltaX * sin;
|
||
}
|
||
}
|
||
if (side === "n" || side === "nw" || side === "ne") {
|
||
if (isResizeFromCenter) {
|
||
y += deltaY;
|
||
} else {
|
||
x += deltaY * -sin;
|
||
y += deltaY * (1 + cos);
|
||
}
|
||
}
|
||
return { x, y };
|
||
};
|
||
|
||
export const resizeXYWidthHightWithRotation = (
|
||
side: "n" | "s" | "w" | "e" | "nw" | "ne" | "sw" | "se",
|
||
x: number,
|
||
y: number,
|
||
width: number,
|
||
height: number,
|
||
offsetX: number,
|
||
offsetY: number,
|
||
angle: number,
|
||
xPointer: number,
|
||
yPointer: number,
|
||
offsetPointer: number,
|
||
sidesWithSameLength: boolean,
|
||
isResizeFromCenter: boolean,
|
||
) => {
|
||
// center point for rotation
|
||
const cx = x + width / 2;
|
||
const cy = y + height / 2;
|
||
|
||
// rotation with current angle
|
||
const [rotatedX, rotatedY] = rotate(xPointer, yPointer, cx, cy, -angle);
|
||
|
||
let scaleX = 1;
|
||
let scaleY = 1;
|
||
if (side === "e" || side === "ne" || side === "se") {
|
||
scaleX = (rotatedX - offsetPointer - x) / width;
|
||
}
|
||
if (side === "s" || side === "sw" || side === "se") {
|
||
scaleY = (rotatedY - offsetPointer - y) / height;
|
||
}
|
||
if (side === "w" || side === "nw" || side === "sw") {
|
||
scaleX = (x + width - offsetPointer - rotatedX) / width;
|
||
}
|
||
if (side === "n" || side === "nw" || side === "ne") {
|
||
scaleY = (y + height - offsetPointer - rotatedY) / height;
|
||
}
|
||
|
||
let nextWidth = width * scaleX;
|
||
let nextHeight = height * scaleY;
|
||
if (sidesWithSameLength) {
|
||
nextWidth = nextHeight = Math.max(nextWidth, nextHeight);
|
||
}
|
||
|
||
return {
|
||
width: nextWidth,
|
||
height: nextHeight,
|
||
...adjustXYWithRotation(
|
||
side,
|
||
x - offsetX,
|
||
y - offsetY,
|
||
angle,
|
||
width - nextWidth,
|
||
height - nextHeight,
|
||
isResizeFromCenter,
|
||
),
|
||
};
|
||
};
|
||
|
||
export const getPointOnAPath = (point: Point, path: Point[]) => {
|
||
const [px, py] = point;
|
||
const [start, ...other] = path;
|
||
let [lastX, lastY] = start;
|
||
let kLine: number = 0;
|
||
let idx: number = 0;
|
||
|
||
// if any item in the array is true, it means that a point is
|
||
// on some segment of a line based path
|
||
const retVal = other.some(([x2, y2], i) => {
|
||
// we always take a line when dealing with line segments
|
||
const x1 = lastX;
|
||
const y1 = lastY;
|
||
|
||
lastX = x2;
|
||
lastY = y2;
|
||
|
||
// if a point is not within the domain of the line segment
|
||
// it is not on the line segment
|
||
if (px < x1 || px > x2) {
|
||
return false;
|
||
}
|
||
|
||
// check if all points lie on the same line
|
||
// y1 = kx1 + b, y2 = kx2 + b
|
||
// y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1)
|
||
|
||
// coefficient for the line (p0, p1)
|
||
const kL = (y2 - y1) / (x2 - x1);
|
||
|
||
// coefficient for the line segment (p0, point)
|
||
const kP1 = (py - y1) / (px - x1);
|
||
|
||
// coefficient for the line segment (point, p1)
|
||
const kP2 = (py - y2) / (px - x2);
|
||
|
||
// because we are basing both lines from the same starting point
|
||
// the only option for collinearity is having same coefficients
|
||
|
||
// using it for floating point comparisons
|
||
const epsilon = 0.3;
|
||
|
||
// if coefficient is more than an arbitrary epsilon,
|
||
// these lines are nor collinear
|
||
if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) {
|
||
return false;
|
||
}
|
||
|
||
// store the coefficient because we are goint to need it
|
||
kLine = kL;
|
||
idx = i;
|
||
|
||
return true;
|
||
});
|
||
|
||
// Return a coordinate that is always on the line segment
|
||
if (retVal === true) {
|
||
return { x: point[0], y: kLine * point[0], segment: idx };
|
||
}
|
||
|
||
return null;
|
||
};
|
||
|
||
export function distance2d(x1: number, y1: number, x2: number, y2: number) {
|
||
const xd = x2 - x1;
|
||
const yd = y2 - y1;
|
||
return Math.hypot(xd, yd);
|
||
}
|
||
|
||
// Checks if the first and last point are close enough
|
||
// to be considered a loop
|
||
export function isPathALoop(points: Point[]): boolean {
|
||
if (points.length >= 3) {
|
||
const [firstPoint, lastPoint] = [points[0], points[points.length - 1]];
|
||
return (
|
||
distance2d(firstPoint[0], firstPoint[1], lastPoint[0], lastPoint[1]) <=
|
||
LINE_CONFIRM_THRESHOLD
|
||
);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// Draw a line from the point to the right till infiinty
|
||
// Check how many lines of the polygon does this infinite line intersects with
|
||
// If the number of intersections is odd, point is in the polygon
|
||
export function isPointInPolygon(
|
||
points: Point[],
|
||
x: number,
|
||
y: number,
|
||
): boolean {
|
||
const vertices = points.length;
|
||
|
||
// There must be at least 3 vertices in polygon
|
||
if (vertices < 3) {
|
||
return false;
|
||
}
|
||
const extreme: Point = [Number.MAX_SAFE_INTEGER, y];
|
||
const p: Point = [x, y];
|
||
let count = 0;
|
||
for (let i = 0; i < vertices; i++) {
|
||
const current = points[i];
|
||
const next = points[(i + 1) % vertices];
|
||
if (doIntersect(current, next, p, extreme)) {
|
||
if (orientation(current, p, next) === 0) {
|
||
return onSegment(current, p, next);
|
||
}
|
||
count++;
|
||
}
|
||
}
|
||
// true if count is off
|
||
return count % 2 === 1;
|
||
}
|
||
|
||
// Check if q lies on the line segment pr
|
||
function onSegment(p: Point, q: Point, r: Point) {
|
||
return (
|
||
q[0] <= Math.max(p[0], r[0]) &&
|
||
q[0] >= Math.min(p[0], r[0]) &&
|
||
q[1] <= Math.max(p[1], r[1]) &&
|
||
q[1] >= Math.min(p[1], r[1])
|
||
);
|
||
}
|
||
|
||
// For the ordered points p, q, r, return
|
||
// 0 if p, q, r are collinear
|
||
// 1 if Clockwise
|
||
// 2 if counterclickwise
|
||
function orientation(p: Point, q: Point, r: Point) {
|
||
const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]);
|
||
if (val === 0) {
|
||
return 0;
|
||
}
|
||
return val > 0 ? 1 : 2;
|
||
}
|
||
|
||
// Check is p1q1 intersects with p2q2
|
||
function doIntersect(p1: Point, q1: Point, p2: Point, q2: Point) {
|
||
const o1 = orientation(p1, q1, p2);
|
||
const o2 = orientation(p1, q1, q2);
|
||
const o3 = orientation(p2, q2, p1);
|
||
const o4 = orientation(p2, q2, q1);
|
||
|
||
if (o1 !== o2 && o3 !== o4) {
|
||
return true;
|
||
}
|
||
|
||
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
|
||
if (o1 === 0 && onSegment(p1, p2, q1)) {
|
||
return true;
|
||
}
|
||
|
||
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
|
||
if (o2 === 0 && onSegment(p1, q2, q1)) {
|
||
return true;
|
||
}
|
||
|
||
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
|
||
if (o3 === 0 && onSegment(p2, p1, q2)) {
|
||
return true;
|
||
}
|
||
|
||
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
|
||
if (o4 === 0 && onSegment(p2, q1, q2)) {
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|