2021-02-14 14:43:23 +01:00
|
|
|
|
import { NormalizedZoomValue, Point, Zoom } from "./types";
|
2020-04-09 01:46:47 -07:00
|
|
|
|
import { LINE_CONFIRM_THRESHOLD } from "./constants";
|
2020-06-01 11:35:44 +02:00
|
|
|
|
import { ExcalidrawLinearElement } from "./element/types";
|
2020-02-01 15:49:18 +04:00
|
|
|
|
|
2020-05-20 16:21:37 +03:00
|
|
|
|
export const rotate = (
|
2020-01-06 19:34:22 +04:00
|
|
|
|
x1: number,
|
|
|
|
|
y1: number,
|
|
|
|
|
x2: number,
|
|
|
|
|
y2: number,
|
2020-01-24 12:04:54 +02:00
|
|
|
|
angle: number,
|
2020-05-20 16:21:37 +03:00
|
|
|
|
): [number, number] =>
|
2020-01-06 19:34:22 +04:00
|
|
|
|
// 𝑎′𝑥=(𝑎𝑥−𝑐𝑥)cos𝜃−(𝑎𝑦−𝑐𝑦)sin𝜃+𝑐𝑥
|
|
|
|
|
// 𝑎′𝑦=(𝑎𝑥−𝑐𝑥)sin𝜃+(𝑎𝑦−𝑐𝑦)cos𝜃+𝑐𝑦.
|
|
|
|
|
// https://math.stackexchange.com/questions/2204520/how-do-i-rotate-a-line-segment-in-a-specific-point-on-the-line
|
2020-05-20 16:21:37 +03:00
|
|
|
|
[
|
2020-01-06 19:34:22 +04:00
|
|
|
|
(x1 - x2) * Math.cos(angle) - (y1 - y2) * Math.sin(angle) + x2,
|
2020-01-24 12:04:54 +02:00
|
|
|
|
(x1 - x2) * Math.sin(angle) + (y1 - y2) * Math.cos(angle) + y2,
|
2020-01-06 19:34:22 +04:00
|
|
|
|
];
|
2020-02-01 15:49:18 +04:00
|
|
|
|
|
2020-12-06 22:39:31 +00:00
|
|
|
|
export const rotatePoint = (
|
|
|
|
|
point: Point,
|
|
|
|
|
center: Point,
|
|
|
|
|
angle: number,
|
|
|
|
|
): [number, number] => rotate(point[0], point[1], center[0], center[1], angle);
|
|
|
|
|
|
2020-05-05 00:25:40 +09:00
|
|
|
|
export const adjustXYWithRotation = (
|
2020-06-25 21:21:27 +02:00
|
|
|
|
sides: {
|
|
|
|
|
n?: boolean;
|
|
|
|
|
e?: boolean;
|
|
|
|
|
s?: boolean;
|
|
|
|
|
w?: boolean;
|
|
|
|
|
},
|
2020-04-09 16:14:32 +01:00
|
|
|
|
x: number,
|
|
|
|
|
y: number,
|
|
|
|
|
angle: number,
|
2020-05-05 00:25:40 +09:00
|
|
|
|
deltaX1: number,
|
|
|
|
|
deltaY1: number,
|
|
|
|
|
deltaX2: number,
|
|
|
|
|
deltaY2: number,
|
|
|
|
|
): [number, number] => {
|
2020-04-09 16:14:32 +01:00
|
|
|
|
const cos = Math.cos(angle);
|
|
|
|
|
const sin = Math.sin(angle);
|
2020-06-25 21:21:27 +02:00
|
|
|
|
if (sides.e && sides.w) {
|
|
|
|
|
x += deltaX1 + deltaX2;
|
|
|
|
|
} else if (sides.e) {
|
|
|
|
|
x += deltaX1 * (1 + cos);
|
|
|
|
|
y += deltaX1 * sin;
|
|
|
|
|
x += deltaX2 * (1 - cos);
|
|
|
|
|
y += deltaX2 * -sin;
|
|
|
|
|
} else if (sides.w) {
|
|
|
|
|
x += deltaX1 * (1 - cos);
|
|
|
|
|
y += deltaX1 * -sin;
|
|
|
|
|
x += deltaX2 * (1 + cos);
|
|
|
|
|
y += deltaX2 * sin;
|
2020-04-02 17:40:26 +09:00
|
|
|
|
}
|
2020-06-25 21:21:27 +02:00
|
|
|
|
|
|
|
|
|
if (sides.n && sides.s) {
|
|
|
|
|
y += deltaY1 + deltaY2;
|
|
|
|
|
} else if (sides.n) {
|
|
|
|
|
x += deltaY1 * sin;
|
|
|
|
|
y += deltaY1 * (1 - cos);
|
|
|
|
|
x += deltaY2 * -sin;
|
|
|
|
|
y += deltaY2 * (1 + cos);
|
|
|
|
|
} else if (sides.s) {
|
|
|
|
|
x += deltaY1 * -sin;
|
|
|
|
|
y += deltaY1 * (1 + cos);
|
|
|
|
|
x += deltaY2 * sin;
|
|
|
|
|
y += deltaY2 * (1 - cos);
|
2020-04-02 17:40:26 +09:00
|
|
|
|
}
|
2020-05-05 00:25:40 +09:00
|
|
|
|
return [x, y];
|
2020-04-09 16:14:32 +01:00
|
|
|
|
};
|
|
|
|
|
|
2020-02-01 15:49:18 +04:00
|
|
|
|
export const getPointOnAPath = (point: Point, path: Point[]) => {
|
|
|
|
|
const [px, py] = point;
|
|
|
|
|
const [start, ...other] = path;
|
|
|
|
|
let [lastX, lastY] = start;
|
|
|
|
|
let kLine: number = 0;
|
|
|
|
|
let idx: number = 0;
|
|
|
|
|
|
|
|
|
|
// if any item in the array is true, it means that a point is
|
|
|
|
|
// on some segment of a line based path
|
|
|
|
|
const retVal = other.some(([x2, y2], i) => {
|
|
|
|
|
// we always take a line when dealing with line segments
|
|
|
|
|
const x1 = lastX;
|
|
|
|
|
const y1 = lastY;
|
|
|
|
|
|
|
|
|
|
lastX = x2;
|
|
|
|
|
lastY = y2;
|
|
|
|
|
|
|
|
|
|
// if a point is not within the domain of the line segment
|
|
|
|
|
// it is not on the line segment
|
|
|
|
|
if (px < x1 || px > x2) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// check if all points lie on the same line
|
|
|
|
|
// y1 = kx1 + b, y2 = kx2 + b
|
|
|
|
|
// y2 - y1 = k(x2 - x2) -> k = (y2 - y1) / (x2 - x1)
|
|
|
|
|
|
|
|
|
|
// coefficient for the line (p0, p1)
|
|
|
|
|
const kL = (y2 - y1) / (x2 - x1);
|
|
|
|
|
|
|
|
|
|
// coefficient for the line segment (p0, point)
|
|
|
|
|
const kP1 = (py - y1) / (px - x1);
|
|
|
|
|
|
|
|
|
|
// coefficient for the line segment (point, p1)
|
|
|
|
|
const kP2 = (py - y2) / (px - x2);
|
|
|
|
|
|
|
|
|
|
// because we are basing both lines from the same starting point
|
|
|
|
|
// the only option for collinearity is having same coefficients
|
|
|
|
|
|
|
|
|
|
// using it for floating point comparisons
|
|
|
|
|
const epsilon = 0.3;
|
|
|
|
|
|
|
|
|
|
// if coefficient is more than an arbitrary epsilon,
|
|
|
|
|
// these lines are nor collinear
|
|
|
|
|
if (Math.abs(kP1 - kL) > epsilon && Math.abs(kP2 - kL) > epsilon) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// store the coefficient because we are goint to need it
|
|
|
|
|
kLine = kL;
|
|
|
|
|
idx = i;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
// Return a coordinate that is always on the line segment
|
|
|
|
|
if (retVal === true) {
|
|
|
|
|
return { x: point[0], y: kLine * point[0], segment: idx };
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return null;
|
|
|
|
|
};
|
2020-04-09 01:46:47 -07:00
|
|
|
|
|
2020-05-20 16:21:37 +03:00
|
|
|
|
export const distance2d = (x1: number, y1: number, x2: number, y2: number) => {
|
2020-04-09 01:46:47 -07:00
|
|
|
|
const xd = x2 - x1;
|
|
|
|
|
const yd = y2 - y1;
|
|
|
|
|
return Math.hypot(xd, yd);
|
2020-05-20 16:21:37 +03:00
|
|
|
|
};
|
2020-04-09 01:46:47 -07:00
|
|
|
|
|
2020-08-08 21:04:15 -07:00
|
|
|
|
export const centerPoint = (a: Point, b: Point): Point => {
|
|
|
|
|
return [(a[0] + b[0]) / 2, (a[1] + b[1]) / 2];
|
|
|
|
|
};
|
|
|
|
|
|
2020-04-09 01:46:47 -07:00
|
|
|
|
// Checks if the first and last point are close enough
|
|
|
|
|
// to be considered a loop
|
2020-06-01 11:35:44 +02:00
|
|
|
|
export const isPathALoop = (
|
|
|
|
|
points: ExcalidrawLinearElement["points"],
|
2021-02-14 14:43:23 +01:00
|
|
|
|
/** supply if you want the loop detection to account for current zoom */
|
|
|
|
|
zoomValue: Zoom["value"] = 1 as NormalizedZoomValue,
|
2020-06-01 11:35:44 +02:00
|
|
|
|
): boolean => {
|
2020-04-09 01:46:47 -07:00
|
|
|
|
if (points.length >= 3) {
|
2021-02-14 14:43:23 +01:00
|
|
|
|
const [first, last] = [points[0], points[points.length - 1]];
|
|
|
|
|
const distance = distance2d(first[0], first[1], last[0], last[1]);
|
|
|
|
|
|
|
|
|
|
// Adjusting LINE_CONFIRM_THRESHOLD to current zoom so that when zoomed in
|
|
|
|
|
// really close we make the threshold smaller, and vice versa.
|
|
|
|
|
return distance <= LINE_CONFIRM_THRESHOLD / zoomValue;
|
2020-04-09 01:46:47 -07:00
|
|
|
|
}
|
|
|
|
|
return false;
|
2020-05-20 16:21:37 +03:00
|
|
|
|
};
|
2020-04-09 01:46:47 -07:00
|
|
|
|
|
|
|
|
|
// Draw a line from the point to the right till infiinty
|
|
|
|
|
// Check how many lines of the polygon does this infinite line intersects with
|
|
|
|
|
// If the number of intersections is odd, point is in the polygon
|
2020-05-20 16:21:37 +03:00
|
|
|
|
export const isPointInPolygon = (
|
2020-04-09 01:46:47 -07:00
|
|
|
|
points: Point[],
|
|
|
|
|
x: number,
|
|
|
|
|
y: number,
|
2020-05-20 16:21:37 +03:00
|
|
|
|
): boolean => {
|
2020-04-09 01:46:47 -07:00
|
|
|
|
const vertices = points.length;
|
|
|
|
|
|
|
|
|
|
// There must be at least 3 vertices in polygon
|
|
|
|
|
if (vertices < 3) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
const extreme: Point = [Number.MAX_SAFE_INTEGER, y];
|
|
|
|
|
const p: Point = [x, y];
|
|
|
|
|
let count = 0;
|
|
|
|
|
for (let i = 0; i < vertices; i++) {
|
|
|
|
|
const current = points[i];
|
|
|
|
|
const next = points[(i + 1) % vertices];
|
2020-08-08 21:04:15 -07:00
|
|
|
|
if (doSegmentsIntersect(current, next, p, extreme)) {
|
|
|
|
|
if (orderedColinearOrientation(current, p, next) === 0) {
|
|
|
|
|
return isPointWithinBounds(current, p, next);
|
2020-04-09 01:46:47 -07:00
|
|
|
|
}
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// true if count is off
|
|
|
|
|
return count % 2 === 1;
|
2020-05-20 16:21:37 +03:00
|
|
|
|
};
|
2020-04-09 01:46:47 -07:00
|
|
|
|
|
2020-08-08 21:04:15 -07:00
|
|
|
|
// Returns whether `q` lies inside the segment/rectangle defined by `p` and `r`.
|
|
|
|
|
// This is an approximation to "does `q` lie on a segment `pr`" check.
|
|
|
|
|
const isPointWithinBounds = (p: Point, q: Point, r: Point) => {
|
2020-04-09 01:46:47 -07:00
|
|
|
|
return (
|
|
|
|
|
q[0] <= Math.max(p[0], r[0]) &&
|
|
|
|
|
q[0] >= Math.min(p[0], r[0]) &&
|
|
|
|
|
q[1] <= Math.max(p[1], r[1]) &&
|
|
|
|
|
q[1] >= Math.min(p[1], r[1])
|
|
|
|
|
);
|
2020-05-20 16:21:37 +03:00
|
|
|
|
};
|
2020-04-09 01:46:47 -07:00
|
|
|
|
|
|
|
|
|
// For the ordered points p, q, r, return
|
2020-08-08 21:04:15 -07:00
|
|
|
|
// 0 if p, q, r are colinear
|
2020-04-09 01:46:47 -07:00
|
|
|
|
// 1 if Clockwise
|
|
|
|
|
// 2 if counterclickwise
|
2020-08-08 21:04:15 -07:00
|
|
|
|
const orderedColinearOrientation = (p: Point, q: Point, r: Point) => {
|
2020-04-09 01:46:47 -07:00
|
|
|
|
const val = (q[1] - p[1]) * (r[0] - q[0]) - (q[0] - p[0]) * (r[1] - q[1]);
|
|
|
|
|
if (val === 0) {
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
return val > 0 ? 1 : 2;
|
2020-05-20 16:21:37 +03:00
|
|
|
|
};
|
2020-04-09 01:46:47 -07:00
|
|
|
|
|
|
|
|
|
// Check is p1q1 intersects with p2q2
|
2020-08-08 21:04:15 -07:00
|
|
|
|
const doSegmentsIntersect = (p1: Point, q1: Point, p2: Point, q2: Point) => {
|
|
|
|
|
const o1 = orderedColinearOrientation(p1, q1, p2);
|
|
|
|
|
const o2 = orderedColinearOrientation(p1, q1, q2);
|
|
|
|
|
const o3 = orderedColinearOrientation(p2, q2, p1);
|
|
|
|
|
const o4 = orderedColinearOrientation(p2, q2, q1);
|
2020-04-09 01:46:47 -07:00
|
|
|
|
|
|
|
|
|
if (o1 !== o2 && o3 !== o4) {
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// p1, q1 and p2 are colinear and p2 lies on segment p1q1
|
2020-08-08 21:04:15 -07:00
|
|
|
|
if (o1 === 0 && isPointWithinBounds(p1, p2, q1)) {
|
2020-04-09 01:46:47 -07:00
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// p1, q1 and p2 are colinear and q2 lies on segment p1q1
|
2020-08-08 21:04:15 -07:00
|
|
|
|
if (o2 === 0 && isPointWithinBounds(p1, q2, q1)) {
|
2020-04-09 01:46:47 -07:00
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// p2, q2 and p1 are colinear and p1 lies on segment p2q2
|
2020-08-08 21:04:15 -07:00
|
|
|
|
if (o3 === 0 && isPointWithinBounds(p2, p1, q2)) {
|
2020-04-09 01:46:47 -07:00
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// p2, q2 and q1 are colinear and q1 lies on segment p2q2
|
2020-08-08 21:04:15 -07:00
|
|
|
|
if (o4 === 0 && isPointWithinBounds(p2, q1, q2)) {
|
2020-04-09 01:46:47 -07:00
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return false;
|
2020-05-20 16:21:37 +03:00
|
|
|
|
};
|
2020-06-24 00:24:52 +09:00
|
|
|
|
|
|
|
|
|
export const getGridPoint = (
|
|
|
|
|
x: number,
|
|
|
|
|
y: number,
|
|
|
|
|
gridSize: number | null,
|
|
|
|
|
): [number, number] => {
|
|
|
|
|
if (gridSize) {
|
|
|
|
|
return [
|
|
|
|
|
Math.round(x / gridSize) * gridSize,
|
|
|
|
|
Math.round(y / gridSize) * gridSize,
|
|
|
|
|
];
|
|
|
|
|
}
|
|
|
|
|
return [x, y];
|
|
|
|
|
};
|