Calculate rotated element bounds properly (#1354)

* Calculate rotated element bounds properly, fixes #1303

* prefer isLinearElement

* empty commit
This commit is contained in:
Daishi Kato 2020-04-11 20:10:47 +09:00 committed by GitHub
parent b971737d32
commit 5ca763cdbb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -197,12 +197,114 @@ export function getArrowPoints(
return [x2, y2, x3, y3, x4, y4];
}
// this function has some code in common with getLinearElementAbsoluteBounds
// there might be more efficient way
const getLinearElementRotatedBounds = (
element: ExcalidrawLinearElement,
cx: number,
cy: number,
): [number, number, number, number] => {
if (element.points.length < 2 || !getShapeForElement(element)) {
const { minX, minY, maxX, maxY } = element.points.reduce(
(limits, [x, y]) => {
[x, y] = rotate(element.x + x, element.y + y, cx, cy, element.angle);
limits.minY = Math.min(limits.minY, y);
limits.minX = Math.min(limits.minX, x);
limits.maxX = Math.max(limits.maxX, x);
limits.maxY = Math.max(limits.maxY, y);
return limits;
},
{ minX: Infinity, minY: Infinity, maxX: -Infinity, maxY: -Infinity },
);
return [minX, minY, maxX, maxY];
}
const shape = getShapeForElement(element) as Drawable[];
// first element is always the curve
const ops = getCurvePathOps(shape[0]);
let currentP: Point = [0, 0];
const { minX, minY, maxX, maxY } = ops.reduce(
(limits, { op, data }) => {
// There are only four operation types:
// move, bcurveTo, lineTo, and curveTo
if (op === "move") {
// change starting point
currentP = (data as unknown) as Point;
// move operation does not draw anything; so, it always
// returns false
} else if (op === "bcurveTo") {
// create points from bezier curve
// bezier curve stores data as a flattened array of three positions
// [x1, y1, x2, y2, x3, y3]
const p1 = [data[0], data[1]] as Point;
const p2 = [data[2], data[3]] as Point;
const p3 = [data[4], data[5]] as Point;
const p0 = currentP;
currentP = p3;
const equation = (t: number, idx: number) =>
Math.pow(1 - t, 3) * p3[idx] +
3 * t * Math.pow(1 - t, 2) * p2[idx] +
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
p0[idx] * Math.pow(t, 3);
let t = 0;
while (t <= 1.0) {
let x = equation(t, 0);
let y = equation(t, 1);
[x, y] = rotate(element.x + x, element.y + y, cx, cy, element.angle);
limits.minY = Math.min(limits.minY, y);
limits.minX = Math.min(limits.minX, x);
limits.maxX = Math.max(limits.maxX, x);
limits.maxY = Math.max(limits.maxY, y);
t += 0.1;
}
} else if (op === "lineTo") {
// TODO: Implement this
} else if (op === "qcurveTo") {
// TODO: Implement this
}
return limits;
},
{ minX: Infinity, minY: Infinity, maxX: -Infinity, maxY: -Infinity },
);
return [minX, minY, maxX, maxY];
};
export const getElementBounds = (
element: ExcalidrawElement,
): [number, number, number, number] => {
const [x1, y1, x2, y2] = getElementAbsoluteCoords(element);
const cx = (x1 + x2) / 2;
const cy = (y1 + y2) / 2;
if (isLinearElement(element)) {
return getLinearElementRotatedBounds(element, cx, cy);
}
if (element.type === "diamond") {
const [x11, y11] = rotate(cx, y1, cx, cy, element.angle);
const [x12, y12] = rotate(cx, y2, cx, cy, element.angle);
const [x22, y22] = rotate(x2, cy, cx, cy, element.angle);
const [x21, y21] = rotate(x2, cy, cx, cy, element.angle);
const minX = Math.min(x11, x12, x22, x21);
const minY = Math.min(y11, y12, y22, y21);
const maxX = Math.max(x11, x12, x22, x21);
const maxY = Math.max(y11, y12, y22, y21);
return [minX, minY, maxX, maxY];
}
if (element.type === "ellipse") {
const w = (x2 - x1) / 2;
const h = (y2 - y1) / 2;
const cos = Math.cos(element.angle);
const sin = Math.sin(element.angle);
const ww = Math.hypot(w * cos, h * sin);
const hh = Math.hypot(h * cos, w * sin);
return [cx - ww, cy - hh, cx + ww, cy + hh];
}
const [x11, y11] = rotate(x1, y1, cx, cy, element.angle);
const [x12, y12] = rotate(x1, y2, cx, cy, element.angle);
const [x22, y22] = rotate(x2, y2, cx, cy, element.angle);