2020-01-06 19:34:22 +04:00
|
|
|
import { ExcalidrawElement } from "./types";
|
|
|
|
import { rotate } from "../math";
|
2020-02-01 15:49:18 +04:00
|
|
|
import { Drawable } from "roughjs/bin/core";
|
2020-03-14 21:48:51 -07:00
|
|
|
import { Point } from "../types";
|
2020-03-08 10:20:55 -07:00
|
|
|
import { getShapeForElement } from "../renderer/renderElement";
|
2020-01-06 19:34:22 +04:00
|
|
|
|
|
|
|
// If the element is created from right to left, the width is going to be negative
|
|
|
|
// This set of functions retrieves the absolute position of the 4 points.
|
2020-01-07 19:04:52 +04:00
|
|
|
export function getElementAbsoluteCoords(element: ExcalidrawElement) {
|
2020-02-04 13:45:22 +04:00
|
|
|
if (element.type === "arrow" || element.type === "line") {
|
|
|
|
return getLinearElementAbsoluteBounds(element);
|
2020-02-01 15:49:18 +04:00
|
|
|
}
|
2020-01-07 19:04:52 +04:00
|
|
|
return [
|
2020-02-04 13:45:22 +04:00
|
|
|
element.x,
|
|
|
|
element.y,
|
|
|
|
element.x + element.width,
|
|
|
|
element.y + element.height,
|
2020-01-07 19:04:52 +04:00
|
|
|
];
|
2020-01-06 19:34:22 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
export function getDiamondPoints(element: ExcalidrawElement) {
|
2020-01-07 18:59:10 +01:00
|
|
|
// Here we add +1 to avoid these numbers to be 0
|
|
|
|
// otherwise rough.js will throw an error complaining about it
|
2020-01-06 19:34:22 +04:00
|
|
|
const topX = Math.floor(element.width / 2) + 1;
|
|
|
|
const topY = 0;
|
|
|
|
const rightX = element.width;
|
|
|
|
const rightY = Math.floor(element.height / 2) + 1;
|
|
|
|
const bottomX = topX;
|
|
|
|
const bottomY = element.height;
|
|
|
|
const leftX = topY;
|
|
|
|
const leftY = rightY;
|
|
|
|
|
|
|
|
return [topX, topY, rightX, rightY, bottomX, bottomY, leftX, leftY];
|
|
|
|
}
|
|
|
|
|
2020-02-04 13:45:22 +04:00
|
|
|
export function getLinearElementAbsoluteBounds(element: ExcalidrawElement) {
|
2020-03-08 10:20:55 -07:00
|
|
|
if (element.points.length < 2 || !getShapeForElement(element)) {
|
2020-02-01 15:49:18 +04:00
|
|
|
const { minX, minY, maxX, maxY } = element.points.reduce(
|
|
|
|
(limits, [x, y]) => {
|
|
|
|
limits.minY = Math.min(limits.minY, y);
|
|
|
|
limits.minX = Math.min(limits.minX, x);
|
|
|
|
|
|
|
|
limits.maxX = Math.max(limits.maxX, x);
|
|
|
|
limits.maxY = Math.max(limits.maxY, y);
|
|
|
|
|
|
|
|
return limits;
|
|
|
|
},
|
|
|
|
{ minX: Infinity, minY: Infinity, maxX: -Infinity, maxY: -Infinity },
|
|
|
|
);
|
|
|
|
return [
|
|
|
|
minX + element.x,
|
|
|
|
minY + element.y,
|
|
|
|
maxX + element.x,
|
|
|
|
maxY + element.y,
|
|
|
|
];
|
|
|
|
}
|
|
|
|
|
2020-03-08 10:20:55 -07:00
|
|
|
const shape = getShapeForElement(element) as Drawable[];
|
2020-02-01 15:49:18 +04:00
|
|
|
|
2020-02-04 13:45:22 +04:00
|
|
|
// first element is always the curve
|
|
|
|
const ops = shape[0].sets[0].ops;
|
2020-02-01 15:49:18 +04:00
|
|
|
|
|
|
|
let currentP: Point = [0, 0];
|
|
|
|
|
|
|
|
const { minX, minY, maxX, maxY } = ops.reduce(
|
|
|
|
(limits, { op, data }) => {
|
|
|
|
// There are only four operation types:
|
|
|
|
// move, bcurveTo, lineTo, and curveTo
|
|
|
|
if (op === "move") {
|
|
|
|
// change starting point
|
2020-03-14 21:48:51 -07:00
|
|
|
currentP = (data as unknown) as Point;
|
2020-02-01 15:49:18 +04:00
|
|
|
// move operation does not draw anything; so, it always
|
|
|
|
// returns false
|
|
|
|
} else if (op === "bcurveTo") {
|
|
|
|
// create points from bezier curve
|
|
|
|
// bezier curve stores data as a flattened array of three positions
|
|
|
|
// [x1, y1, x2, y2, x3, y3]
|
|
|
|
const p1 = [data[0], data[1]] as Point;
|
|
|
|
const p2 = [data[2], data[3]] as Point;
|
|
|
|
const p3 = [data[4], data[5]] as Point;
|
|
|
|
|
|
|
|
const p0 = currentP;
|
|
|
|
currentP = p3;
|
|
|
|
|
|
|
|
const equation = (t: number, idx: number) =>
|
|
|
|
Math.pow(1 - t, 3) * p3[idx] +
|
|
|
|
3 * t * Math.pow(1 - t, 2) * p2[idx] +
|
|
|
|
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
|
|
|
|
p0[idx] * Math.pow(t, 3);
|
|
|
|
|
|
|
|
let t = 0;
|
|
|
|
while (t <= 1.0) {
|
|
|
|
const x = equation(t, 0);
|
|
|
|
const y = equation(t, 1);
|
|
|
|
|
|
|
|
limits.minY = Math.min(limits.minY, y);
|
|
|
|
limits.minX = Math.min(limits.minX, x);
|
|
|
|
|
|
|
|
limits.maxX = Math.max(limits.maxX, x);
|
|
|
|
limits.maxY = Math.max(limits.maxY, y);
|
|
|
|
|
|
|
|
t += 0.1;
|
|
|
|
}
|
|
|
|
} else if (op === "lineTo") {
|
|
|
|
// TODO: Implement this
|
|
|
|
} else if (op === "qcurveTo") {
|
|
|
|
// TODO: Implement this
|
|
|
|
}
|
|
|
|
return limits;
|
|
|
|
},
|
|
|
|
{ minX: Infinity, minY: Infinity, maxX: -Infinity, maxY: -Infinity },
|
|
|
|
);
|
|
|
|
|
|
|
|
return [
|
|
|
|
minX + element.x,
|
|
|
|
minY + element.y,
|
|
|
|
maxX + element.x,
|
|
|
|
maxY + element.y,
|
|
|
|
];
|
|
|
|
}
|
|
|
|
|
2020-03-08 10:20:55 -07:00
|
|
|
export function getArrowPoints(element: ExcalidrawElement, shape: Drawable[]) {
|
2020-02-09 17:23:09 +04:00
|
|
|
const ops = shape[0].sets[0].ops;
|
2020-01-06 19:34:22 +04:00
|
|
|
|
2020-02-09 17:23:09 +04:00
|
|
|
const data = ops[ops.length - 1].data;
|
|
|
|
const p3 = [data[4], data[5]] as Point;
|
|
|
|
const p2 = [data[2], data[3]] as Point;
|
|
|
|
const p1 = [data[0], data[1]] as Point;
|
|
|
|
|
|
|
|
// we need to find p0 of the bezier curve
|
|
|
|
// it is typically the last point of the previous
|
|
|
|
// curve; it can also be the position of moveTo operation
|
|
|
|
const prevOp = ops[ops.length - 2];
|
|
|
|
let p0: Point = [0, 0];
|
|
|
|
if (prevOp.op === "move") {
|
2020-03-14 21:48:51 -07:00
|
|
|
p0 = (prevOp.data as unknown) as Point;
|
2020-02-09 17:23:09 +04:00
|
|
|
} else if (prevOp.op === "bcurveTo") {
|
|
|
|
p0 = [prevOp.data[4], prevOp.data[5]];
|
|
|
|
}
|
|
|
|
|
|
|
|
// B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
|
|
|
|
const equation = (t: number, idx: number) =>
|
|
|
|
Math.pow(1 - t, 3) * p3[idx] +
|
|
|
|
3 * t * Math.pow(1 - t, 2) * p2[idx] +
|
|
|
|
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
|
|
|
|
p0[idx] * Math.pow(t, 3);
|
|
|
|
|
|
|
|
// we know the last point of the arrow
|
|
|
|
const [x2, y2] = p3;
|
|
|
|
|
|
|
|
// by using cubic bezier equation (B(t)) and the given parameters,
|
|
|
|
// we calculate a point that is closer to the last point
|
|
|
|
// The value 0.3 is chosen arbitrarily and it works best for all
|
|
|
|
// the tested cases
|
|
|
|
const [x1, y1] = [equation(0.3, 0), equation(0.3, 1)];
|
|
|
|
|
|
|
|
// find the normalized direction vector based on the
|
|
|
|
// previously calculated points
|
2020-01-06 19:34:22 +04:00
|
|
|
const distance = Math.hypot(x2 - x1, y2 - y1);
|
2020-02-09 17:23:09 +04:00
|
|
|
const nx = (x2 - x1) / distance;
|
|
|
|
const ny = (y2 - y1) / distance;
|
|
|
|
|
|
|
|
const size = 30; // pixels
|
2020-02-05 15:54:17 +04:00
|
|
|
const arrowLength = element.points.reduce((total, [cx, cy], idx, points) => {
|
|
|
|
const [px, py] = idx > 0 ? points[idx - 1] : [0, 0];
|
|
|
|
return total + Math.hypot(cx - px, cy - py);
|
|
|
|
}, 0);
|
|
|
|
|
2020-01-06 19:34:22 +04:00
|
|
|
// Scale down the arrow until we hit a certain size so that it doesn't look weird
|
2020-02-05 15:54:17 +04:00
|
|
|
// This value is selected by minizing a minmum size with the whole length of the arrow
|
|
|
|
// intead of last segment of the arrow
|
|
|
|
const minSize = Math.min(size, arrowLength / 2);
|
2020-02-09 17:23:09 +04:00
|
|
|
const xs = x2 - nx * minSize;
|
|
|
|
const ys = y2 - ny * minSize;
|
2020-01-06 19:34:22 +04:00
|
|
|
|
|
|
|
const angle = 20; // degrees
|
|
|
|
const [x3, y3] = rotate(xs, ys, x2, y2, (-angle * Math.PI) / 180);
|
|
|
|
const [x4, y4] = rotate(xs, ys, x2, y2, (angle * Math.PI) / 180);
|
|
|
|
|
2020-02-01 15:49:18 +04:00
|
|
|
return [x2, y2, x3, y3, x4, y4];
|
2020-01-06 19:34:22 +04:00
|
|
|
}
|
2020-01-15 22:07:19 +03:00
|
|
|
|
2020-01-26 20:15:08 +01:00
|
|
|
export function getCommonBounds(elements: readonly ExcalidrawElement[]) {
|
|
|
|
let minX = Infinity;
|
|
|
|
let maxX = -Infinity;
|
|
|
|
let minY = Infinity;
|
|
|
|
let maxY = -Infinity;
|
|
|
|
|
|
|
|
elements.forEach(element => {
|
|
|
|
const [x1, y1, x2, y2] = getElementAbsoluteCoords(element);
|
|
|
|
minX = Math.min(minX, x1);
|
|
|
|
minY = Math.min(minY, y1);
|
|
|
|
maxX = Math.max(maxX, x2);
|
|
|
|
maxY = Math.max(maxY, y2);
|
|
|
|
});
|
|
|
|
|
|
|
|
return [minX, minY, maxX, maxY];
|
|
|
|
}
|