excalidraw/src/element/collision.ts

255 lines
7.6 KiB
TypeScript
Raw Normal View History

import { distanceBetweenPointAndSegment } from "../math";
import { ExcalidrawElement } from "./types";
import {
getDiamondPoints,
getElementAbsoluteCoords,
getLinearElementAbsoluteBounds,
} from "./bounds";
import { Point } from "roughjs/bin/geometry";
import { Drawable, OpSet } from "roughjs/bin/core";
function isElementDraggableFromInside(element: ExcalidrawElement): boolean {
return element.backgroundColor !== "transparent" || element.isSelected;
}
export function hitTest(
element: ExcalidrawElement,
x: number,
2020-01-24 12:04:54 +02:00
y: number,
): boolean {
// For shapes that are composed of lines, we only enable point-selection when the distance
// of the click is less than x pixels of any of the lines that the shape is composed of
const lineThreshold = 10;
if (element.type === "ellipse") {
// https://stackoverflow.com/a/46007540/232122
const px = Math.abs(x - element.x - element.width / 2);
const py = Math.abs(y - element.y - element.height / 2);
let tx = 0.707;
let ty = 0.707;
const a = Math.abs(element.width) / 2;
const b = Math.abs(element.height) / 2;
[0, 1, 2, 3].forEach(x => {
const xx = a * tx;
const yy = b * ty;
const ex = ((a * a - b * b) * tx ** 3) / a;
const ey = ((b * b - a * a) * ty ** 3) / b;
const rx = xx - ex;
const ry = yy - ey;
const qx = px - ex;
const qy = py - ey;
const r = Math.hypot(ry, rx);
const q = Math.hypot(qy, qx);
tx = Math.min(1, Math.max(0, ((qx * r) / q + ex) / a));
ty = Math.min(1, Math.max(0, ((qy * r) / q + ey) / b));
const t = Math.hypot(ty, tx);
tx /= t;
ty /= t;
});
if (isElementDraggableFromInside(element)) {
return (
a * tx - (px - lineThreshold) >= 0 && b * ty - (py - lineThreshold) >= 0
);
}
return Math.hypot(a * tx - px, b * ty - py) < lineThreshold;
} else if (element.type === "rectangle") {
const [x1, y1, x2, y2] = getElementAbsoluteCoords(element);
if (isElementDraggableFromInside(element)) {
return (
x > x1 - lineThreshold &&
x < x2 + lineThreshold &&
y > y1 - lineThreshold &&
y < y2 + lineThreshold
);
}
// (x1, y1) --A-- (x2, y1)
// |D |B
// (x1, y2) --C-- (x2, y2)
return (
distanceBetweenPointAndSegment(x, y, x1, y1, x2, y1) < lineThreshold || // A
distanceBetweenPointAndSegment(x, y, x2, y1, x2, y2) < lineThreshold || // B
distanceBetweenPointAndSegment(x, y, x2, y2, x1, y2) < lineThreshold || // C
distanceBetweenPointAndSegment(x, y, x1, y2, x1, y1) < lineThreshold // D
);
} else if (element.type === "diamond") {
x -= element.x;
y -= element.y;
let [
topX,
topY,
rightX,
rightY,
bottomX,
bottomY,
leftX,
2020-01-24 12:04:54 +02:00
leftY,
] = getDiamondPoints(element);
if (isElementDraggableFromInside(element)) {
// TODO: remove this when we normalize coordinates globally
if (topY > bottomY) {
[bottomY, topY] = [topY, bottomY];
}
if (rightX < leftX) {
[leftX, rightX] = [rightX, leftX];
}
topY -= lineThreshold;
bottomY += lineThreshold;
leftX -= lineThreshold;
rightX += lineThreshold;
// all deltas should be < 0. Delta > 0 indicates it's on the outside side
// of the line.
//
// (topX, topY)
// D / \ A
// / \
// (leftX, leftY) (rightX, rightY)
// C \ / B
// \ /
// (bottomX, bottomY)
//
// https://stackoverflow.com/a/2752753/927631
return (
// delta from line D
(leftX - topX) * (y - leftY) - (leftX - x) * (topY - leftY) <= 0 &&
// delta from line A
(topX - rightX) * (y - rightY) - (x - rightX) * (topY - rightY) <= 0 &&
// delta from line B
(rightX - bottomX) * (y - bottomY) -
(x - bottomX) * (rightY - bottomY) <=
0 &&
// delta from line C
(bottomX - leftX) * (y - leftY) - (x - leftX) * (bottomY - leftY) <= 0
);
}
return (
distanceBetweenPointAndSegment(x, y, topX, topY, rightX, rightY) <
lineThreshold ||
distanceBetweenPointAndSegment(x, y, rightX, rightY, bottomX, bottomY) <
lineThreshold ||
distanceBetweenPointAndSegment(x, y, bottomX, bottomY, leftX, leftY) <
lineThreshold ||
distanceBetweenPointAndSegment(x, y, leftX, leftY, topX, topY) <
lineThreshold
);
} else if (element.type === "arrow" || element.type === "line") {
if (!element.shape) {
return false;
}
const shape = element.shape as Drawable[];
const [x1, y1, x2, y2] = getLinearElementAbsoluteBounds(element);
if (x < x1 || y < y1 - 10 || x > x2 || y > y2 + 10) {
return false;
}
const relX = x - element.x;
const relY = y - element.y;
// hit thest all "subshapes" of the linear element
return shape.some(s => hitTestRoughShape(s.sets, relX, relY));
} else if (element.type === "text") {
const [x1, y1, x2, y2] = getElementAbsoluteCoords(element);
return x >= x1 && x <= x2 && y >= y1 && y <= y2;
} else if (element.type === "selection") {
console.warn("This should not happen, we need to investigate why it does.");
return false;
}
throw new Error(`Unimplemented type ${element.type}`);
}
const pointInBezierEquation = (
p0: Point,
p1: Point,
p2: Point,
p3: Point,
[mx, my]: Point,
) => {
// B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
const equation = (t: number, idx: number) =>
Math.pow(1 - t, 3) * p3[idx] +
3 * t * Math.pow(1 - t, 2) * p2[idx] +
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
p0[idx] * Math.pow(t, 3);
const epsilon = 20;
// go through t in increments of 0.01
let t = 0;
while (t <= 1.0) {
const tx = equation(t, 0);
const ty = equation(t, 1);
const diff = Math.sqrt(Math.pow(tx - mx, 2) + Math.pow(ty - my, 2));
if (diff < epsilon) {
return true;
}
t += 0.01;
}
return false;
};
const hitTestRoughShape = (opSet: OpSet[], x: number, y: number) => {
// read operations from first opSet
const ops = opSet[0].ops;
// set start position as (0,0) just in case
// move operation does not exist (unlikely but it is worth safekeeping it)
let currentP: Point = [0, 0];
return ops.some(({ op, data }, idx) => {
// There are only four operation types:
// move, bcurveTo, lineTo, and curveTo
if (op === "move") {
// change starting point
currentP = data as Point;
// move operation does not draw anything; so, it always
// returns false
} else if (op === "bcurveTo") {
// create points from bezier curve
// bezier curve stores data as a flattened array of three positions
// [x1, y1, x2, y2, x3, y3]
const p1 = [data[0], data[1]] as Point;
const p2 = [data[2], data[3]] as Point;
const p3 = [data[4], data[5]] as Point;
const p0 = currentP;
currentP = p3;
// check if points are on the curve
// cubic bezier curves require four parameters
// the first parameter is the last stored position (p0)
const retVal = pointInBezierEquation(p0, p1, p2, p3, [x, y]);
// set end point of bezier curve as the new starting point for
// upcoming operations as each operation is based on the last drawn
// position of the previous operation
return retVal;
} else if (op === "lineTo") {
// TODO: Implement this
} else if (op === "qcurveTo") {
// TODO: Implement this
}
return false;
});
};